

Licence 1ère année Mathématiques et Calcul 1

Quentin Denoyelle quentin.denoyelle@u-paris.fr

(avec la collaboration de A. Chambaz, L. Moisan et F. Benaych)

UFR de Mathématiques et Informatique Université Paris Cité, Campus Saint-Germain-des-Près

6 octobre 2025

Chapitre 2 : Polynômes

- Quelques généralités
 - Définitions
 - Division euclidienne

2 Racines et factorisation

Section 1

Quelques généralités

Definition

On appelle polynôme à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$), toute quantité s'écrivant $a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n$, pour $n \in \mathbb{N}$, où

- ▶ $a_0, a_1, ... a_n \in \mathbb{K}$, ce sont les coefficients de P,
- ▶ X est une variable ou indéterminée obéissant aux règles de calculs : pour $k, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{K}$, $\alpha X^k + \beta X^k = (\alpha + \beta) X^k$ et $(\alpha X^k)(\beta X^j) = (\alpha \beta) X^{k+j}$.

On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} , d'indéterminée X. Il obéit aux règles de distributivité usuelles.

Definition

On appelle polynôme à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$), toute quantité s'écrivant $a_0 + a_1 X + a_2 X^2 + \ldots + a_n X^n$, pour $n \in \mathbb{N}$, où

- ▶ $a_0, a_1, ... a_n \in \mathbb{K}$, ce sont les coefficients de P,
- ▶ X est une variable ou indéterminée obéissant aux règles de calculs : pour $k, j \in \mathbb{N}$, $\alpha, \beta \in \mathbb{K}$, $\alpha X^k + \beta X^k = (\alpha + \beta) X^k$ et $(\alpha X^k)(\beta X^j) = (\alpha \beta) X^{k+j}$.

On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} , d'indéterminée X. Il obéit aux règles de distributivité usuelles.

Example Soient
$$P = X^2 - 1$$
 et $Q = 3X^3 + 2X$ deux éléments de $\mathbb{R}[X]$. Alors $PO =$

Soit
$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{K}[X]$$
, avec $n \in \mathbb{N}$.

Vocabulaire.

▶ Si $P \neq 0$. Degré de P: plus grand $k \in \mathbb{N}$, $a_k \neq 0$. Noté: deg(P).

Soit
$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{K}[X]$$
, avec $n \in \mathbb{N}$.

Vocabulaire.

- ▶ Si $P \neq 0$. Degré de P: plus grand $k \in \mathbb{N}$, $a_k \neq 0$. Noté: deg(P).
- ▶ monôme de degré $k : a_k X^k$ (avec $a_k \neq 0$).

Soit
$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{K}[X]$$
, avec $n \in \mathbb{N}$.

Vocabulaire.

- ▶ Si $P \neq 0$. Degré de P: plus grand $k \in \mathbb{N}$, $a_k \neq 0$. Noté: deg(P).
- ▶ monôme de degré $k : a_k X^k$ (avec $a_k \neq 0$).
- a_kX^k est le terme de degré k de P et a_k est le coefficient de degré k de P.

Soit
$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{K}[X]$$
, avec $n \in \mathbb{N}$.

Vocabulaire.

- ▶ Si $P \neq 0$. Degré de P: plus grand $k \in \mathbb{N}$, $a_k \neq 0$. Noté: deg(P).
- ▶ monôme de degré $k : a_k X^k$ (avec $a_k \neq 0$).
- ▶ a_kX^k est le terme de degré k de P et a_k est le coefficient de degré k de P.
- ▶ Si deg(P) = n, alors a_n est coefficient dominant de P et $a_n X^n$ son terme dominant.

Soit
$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{K}[X]$$
, avec $n \in \mathbb{N}$.

Vocabulaire.

- ▶ Si $P \neq 0$. Degré de P: plus grand $k \in \mathbb{N}$, $a_k \neq 0$. Noté: deg(P).
- ▶ monôme de degré $k : a_k X^k$ (avec $a_k \neq 0$).
- a_kX^k est le terme de degré k de P et a_k est le coefficient de degré k de P.
- ▶ Si deg(P) = n, alors a_n est coefficient dominant de P et $a_n X^n$ son terme dominant.
- ▶ a_0 est le coefficient constant de P. On dira que P est un polynôme constant si P = a pour un certain $a \in \mathbb{K}$.

Soit
$$P = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in \mathbb{K}[X]$$
, avec $n \in \mathbb{N}$.

Vocabulaire.

- ▶ Si $P \neq 0$. Degré de P: plus grand $k \in \mathbb{N}$, $a_k \neq 0$. Noté: deg(P).
- ▶ monôme de degré $k : a_k X^k$ (avec $a_k \neq 0$).
- a_kX^k est le terme de degré k de P et a_k est le coefficient de degré k de P.
- ▶ Si deg(P) = n, alors a_n est coefficient dominant de P et $a_n X^n$ son terme dominant.
- ▶ a_0 est le coefficient constant de P. On dira que P est un polynôme constant si P = a pour un certain $a \in \mathbb{K}$.
- ► Si $P \neq 0$. Racine de P: $\alpha \in \mathbb{K}$ tel que $P(\alpha) = 0$.

Proposition

Deux polynômes sont égaux si et seulement si ils ont les mêmes coefficients.

Proposition

Deux polynômes sont égaux si et seulement si ils ont les mêmes coefficients.

Corollaire

Un polynôme est nul si et seulement si tous ses coefficients sont nuls.

Polynôme dérivée

Definition

Soit $P = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n \in \mathbb{K}[X]$. On appelle polynôme dérivé de P (noté P') le polynôme

$$P' = a_1 + 2a_2X + \ldots + na_nX^{n-1}.$$

En itérant le processus, on définit ainsi les dérivées successives P', P'', $P^{(3)}$, etc...

Polynôme dérivée

Definition

Soit $P = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n \in \mathbb{K}[X]$. On appelle polynôme dérivé de P (noté P') le polynôme

$$P' = a_1 + 2a_2X + \ldots + na_nX^{n-1}.$$

En itérant le processus, on définit ainsi les dérivées successives P', P'', $P^{(3)}$, etc...

Exercice 2

Soit $P \in \mathbb{K}[X]$. Montrer que P' = 0 si et seulement si P est un polynôme constant.

Proposition

Soient $P, Q \in \mathbb{K}[X]$. Alors deg(PQ) =

Proposition

Soient $P, Q \in \mathbb{K}[X]$. Alors $\deg(PQ) = \deg(P) + \deg(Q)$.

Remarque

Si P = 0, on utilise la convention $deg(P) = -\infty$.

Proposition

Soient $P, Q \in \mathbb{K}[X]$. Alors $\deg(PQ) = \deg(P) + \deg(Q)$.

Démonstration.

MC1

Exercice 3

Montrer que $deg(P+Q) \leq max(deg(P), deg(Q))$.

Théorème (Division euclidienne)

Soient $A, B \in \mathbb{K}[X]$, $B \neq 0$. Alors il existe un unique couple $(Q, R) \in \mathbb{K}[X]^2$ satisfaisant

- ightharpoonup A = QB + R,
- ▶ deg(R) < deg(B).

Dans ce cas, A = QB + R est la division euclidienne de A par B, R est le reste de cette division.

Example

Effectuer la division euclidienne de $P = 2X^3 + 1$ par $Q = X^2 + X$.

Example

Effectuer la division euclidienne de $P = 2X^3 + 1$ par $Q = X^2 + X$.

Algorithme de la division euclidienne.

► Considérer les termes dominants de *P* et *Q* et effectuer la division. Notons \tilde{S} le résultat.

Example

Effectuer la division euclidienne de $P = 2X^3 + 1$ par $Q = X^2 + X$.

Algorithme de la division euclidienne.

- Considérer les termes dominants de P et Q et effectuer la division. Notons S le résultat.
- ▶ Déterminer le reste de cette opération : $\tilde{P} = P Q\tilde{S}$. Nécessiarement $\deg(\tilde{P}) < \deg(P)$.

Example

Effectuer la division euclidienne de $P = 2X^3 + 1$ par $Q = X^2 + X$.

Algorithme de la division euclidienne.

- Considérer les termes dominants de P et Q et effectuer la division. Notons S le résultat.
- ▶ Déterminer le reste de cette opération : $\tilde{P} = P Q\tilde{S}$. Nécessiarement $\deg(\tilde{P}) < \deg(P)$.
- ▶ Retourner à la première étape. Remplacer P par \tilde{P} . Ajouter le nouveau \tilde{S} au précédent.

Example

Effectuer la division euclidienne de $P = 2X^3 + 1$ par $Q = X^2 + X$.

Algorithme de la division euclidienne.

- Considérer les termes dominants de P et Q et effectuer la division. Notons S le résultat.
- ▶ Déterminer le reste de cette opération : $\tilde{P} = P Q\tilde{S}$. Nécessiarement $\deg(\tilde{P}) < \deg(P)$.
- Retourner à la première étape. Remplacer P par P. Ajouter le nouveau S au précédent.
- ► Continuer tant que $deg(\tilde{P}) < deg(Q)$. Quand c'est le cas, $R = \tilde{P}$ et $S = \tilde{S}$.

Example

Effectuer la division euclidienne de $P = 2X^3 + 1$ par $Q = X^2 + X$.

Théorème

Soit $P \in \mathbb{K}[X]$, $\deg(P) = n \in \mathbb{N}^*$ et soit $\alpha \in \mathbb{K}$. Les deux propriétés suivantes sont équivalentes :

- 1. α est une racine de P,
- 2. il existe $Q \in \mathbb{K}[X]$ tel que $\deg(Q) = n 1$ et $P = (X \alpha)Q$.

Démonstration.

Méthode pour trouver Q : par identification.

► Introduire des coefficients pour *Q* :

$$Q = b_{n-1}X^{n-1} + \dots b_1X + b_0.$$

- ▶ Développer $(X \alpha)Q$.
- ▶ Identifier les coefficients obtenus avec ceux de P.

Example

Soit
$$P = X^3 - 3X^2 + 3X - 2$$
. On a $P(2) = 0$. Cherchons Q tell que $P = (X - 2)Q$.

Racines et factorisation

Racines multiples

Definition (Multiplicité)

Soit $P \in \mathbb{K}[X]$, $P \neq 0$ et $\alpha \in \mathbb{K}$ racine de P. On appelle multiplicité de α le plus grand $k \in \mathbb{N}^*$ tel que $P = (X - \alpha)^k Q$ avec $Q \in \mathbb{K}[X]$.

Racines multiples

Definition (Multiplicité)

Soit $P \in \mathbb{K}[X]$, $P \neq 0$ et $\alpha \in \mathbb{K}$ racine de P. On appelle multiplicité de α le plus grand $k \in \mathbb{N}^*$ tel que $P = (X - \alpha)^k Q$ avec $Q \in \mathbb{K}[X]$.

Example

 $X^{3}(X-1)(X-2)^{2}$ admet 3 racines : 0 (de multiplicité 3), 1 (racine simple), et 2 (racine double).

Racines multiples

Definition (Multiplicité)

Soit $P \in \mathbb{K}[X]$, $P \neq 0$ et $\alpha \in \mathbb{K}$ racine de P. On appelle multiplicité de α le plus grand $k \in \mathbb{N}^*$ tel que $P = (X - \alpha)^k Q$ avec $Q \in \mathbb{K}[X]$.

Example

 $X^{3}(X-1)(X-2)^{2}$ admet 3 racines : 0 (de multiplicité 3), 1 (racine simple), et 2 (racine double).

Théorème

Soient $P \in \mathbb{K}[X]$ tel que $P \neq 0$, $\alpha \in \mathbb{K}$ et $k \in \mathbb{N}^*$. Alors on a l'équivalence entre

- α est une racine de multiplicité k de P,
- 2. il existe $Q \in \mathbb{K}[X]$, $P = (X \alpha)^k Q$ avec $Q(\alpha) \neq 0$,
- 3. $P(\alpha) = P'(\alpha) = \ldots = P^{(k-1)}(\alpha) = 0$ et $P^{(k)}(\alpha) \neq 0$.

Théorème (Théorème de d'Alembert)

Tout polynôme non-constant à coefficients complexes admet au moins une racine complexe.

Démonstration.

Admis.

Théorème (Théorème de d'Alembert)

Tout polynôme non-constant à coefficients complexes admet au moins une racine complexe.

Démonstration.

Admis.

Corollaire

Tout polynôme de degré $n \ge 1$, à coefficients complexes, admet exactement n racines complexes (comptées autant de fois que leur multiplicité).

Corollaire

Soit $P \in \mathbb{C}[X]$, $\deg(P) = n \in \mathbb{N}^*$. Alors P s'écrit

$$P = a(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n),$$

avec a le coefficient dominant de P et α_i sont les racines de P, comptées autant de fois que leur multiplicité

Example

Le polynôme $P = X^4 + X^3 + 2X^2 + X + 1$ a pour racines $j = e^{\frac{2i\pi}{3}}, j^2, i, -i$. Comme son coefficient dominant est 1 et deg(P) = 4, on peut donc écrire $P = (X - j)(X - j^2)(X - i)(X + i)$.

Example

- Le polynôme $P = X^4 + X^3 + 2X^2 + X + 1$ a pour racines $j = e^{\frac{2i\pi}{3}}, j^2, i, -i$. Comme son coefficient dominant est 1 et deg(P) = 4, on peut donc écrire $P = (X j)(X j^2)(X i)(X + i)$.
- ► Cherchons les racines du polynôme $P = X^3 + X 2$. Comme P(1) = 0 (1 est racine évidente), on peut factoriser P sous la forme

$$P = (X-1)(X^2 + X + 2).$$

Les deux autres racines de P sont donc les racines du polynôme X^2+X+2 , c'est-à-dire les complexes $\frac{-1\pm i\sqrt{7}}{2}$.

Example

- Le polynôme $P = X^4 + X^3 + 2X^2 + X + 1$ a pour racines $j = e^{\frac{2i\pi}{3}}, j^2, i, -i$. Comme son coefficient dominant est 1 et deg(P) = 4, on peut donc écrire $P = (X j)(X j^2)(X i)(X + i)$.
- ► Cherchons les racines du polynôme $P = X^3 + X 2$. Comme P(1) = 0 (1 est racine évidente), on peut factoriser P sous la forme

$$P = (X-1)(X^2 + X + 2).$$

Les deux autres racines de P sont donc les racines du polynôme X^2+X+2 , c'est-à-dire les complexes $\frac{-1\pm i\sqrt{7}}{2}$.

Exercice 6

Factoriser $P = X^3 - 3X^2 + 2X$.