

# Licence 1ère année Mathématiques et Calcul 1

Quentin Denoyelle quentin.denoyelle@u-paris.fr

(avec la collaboration de A. Chambaz, L. Moisan et F. Benaych)

UFR de Mathématiques et Informatique Université Paris Cité, Campus Saint-Germain-des-Près

3 octobre 2025

Université Paris Cité 2025-2026 MC1 1 / 75

# Chapitre 1 : Les Nombres Complexes

Université Paris Cité 2025-2026 MC1 2 / 75

- Introduction
  - lacktriangle Opérations sur  $\mathbb C$
- Géométrie des nombres complexes
  - Nombres complexes et opérations représentés dans le plan
  - Conjugaison
  - Module d'un nombre complexe
  - Lieux géométriques simples
  - Argument
  - Représentation de la multiplication
  - 3 Différentes manières d'écrire un nombre complexe
    - Écriture trigonométrique des nombres complexes
    - Exponentielle complexe Formule d'Euler
    - Écriture exponentielle des nombres complexes
- 4 Applications
  - Formule de Moivre
  - Équations du second degré à coefficients complexes
  - Deux formules à connaître
  - Trigonométrie

## Section 1

## Introduction

## Historique

Introduits au XVIe siècle par Cardan, Bombelli, . . . comme un artifice pour résoudre des équations du 3ème degré.

## Example

Pour résoudre l'équation

$$x^3 - 7x + 6 = 0$$
,

les formules générales imposent de résoudre d'abord

$$x^2 + 6x + \frac{343}{27} = 0.$$

dont le discriminant  $\Delta = 6^2 - 4 \times \frac{343}{27} = \frac{-400}{27}$  est négatif!

## Historique

### Example

Pour résoudre l'équation

$$x^3 - 7x + 6 = 0$$

les formules générales imposent de résoudre d'abord

$$x^2 + 6x + \frac{343}{27} = 0.$$

dont le discriminant  $\Delta=6^2-4\times\frac{343}{27}=\frac{-400}{27}$  est négatif! L'introduction du nombre "imaginaire"  $\sqrt{\Delta}$  (dont le carré est négatif) permet alors de continuer formellement les calculs, qui aboutissent ensuite aux solutions : 1, 2,—3 toutes réelles!

## Pourquoi les nombres complexes?

## Indispensables, notamment via l'analyse de Fourier, en :

- physique (mécanique des fluides, mécanique quantique, cosmologie,...),
- traitement du signal
- probabilités et statistique,
- traitement des images (algorithmes de Snapshat, Instagram, Photoshop, etc...),
- **.** . . .

 Université Paris Cité
 2025-2026
 MC1
 7 / 75

## Définition - Nombres complexes

On définit formellement le nombre imaginaire i comme une racine carrée de -1:  $i^2 = -1$ .

### Definition

On définit l'ensemble des nombres complexes comme :

$$\mathbb{C} = \{x + iy/x, y \in \mathbb{R}\}.$$

Soit  $z = x + iy \in \mathbb{C}$ .

- ightharpoonup x est la partie réelle de z, notée : x = Re(z)
- ightharpoonup y est la partie imaginaire de z, notée : y = Im(z)

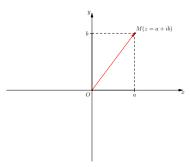
Université Paris Cité 2025-2026 MC1 8 / 75

## Représentation d'un nombre complexe

On se donne un repère orthonormée  $(O, \vec{i}, \vec{j})$ .

Soient  $a, b \in \mathbb{R}$  et considérons le point du plan M = (a, b).

Alors M représente le nombre complexe z = a + ib dans le plan. z est appelé l'affixe du point M et on note M(z).



L'ensemble de ces points M associé aux  $z \in \mathbb{C}$  dans ce repère est appelé plan complexe.

## Règles de calcul

Soient  $z = x + iv \in \mathbb{C}$  et  $z' = x' + iv' \in \mathbb{C}$ .

## Proposition (Opérations de base)

- Annulation:  $z = x + iy = 0 \iff x = y = 0$ .
- ► Sommation : z + z' = (x + iy) + (x' + iy') = x + x' + i(y + y').
- ► Produit: zz' = (x + iy)(x' + iy') = xx' yy' + i(xy' + x'y).

### Corollaire

- $\triangleright x + iy = x' + iy' \iff x = x' \text{ et } v = v'.$
- ► Si  $x + iy \neq 0$ , alors  $(x + iy) \frac{x iy}{(x^2 + y^2)} = 1$ . Donc

$$\frac{1}{x+iy} = \frac{x-iy}{x^2+y^2}$$

MC1

## Règles de calcul

### **Exercice 1**

Soient  $z = x + iy \in \mathbb{C}$  et  $z' = x' + iy' \in \mathbb{C}$ . Écrire sous la forme a + ib (appelée *écriture algébrique*), avec  $a, b \in \mathbb{R}$ , la quantité suivante :

$$\frac{z}{z'}$$
.

# Règle de calcul

### **Exercice 2**

Écrire les nombres complexes suivants sous la forme algébrique x + iy avec  $x, y \in \mathbb{R}$ .

1. 
$$(5+6i)+(3-2i)$$
.

2. 
$$(4-\frac{1}{2}i)-(3-\frac{5}{2}i)$$
.

3. 
$$(3+2i)(5-3i)$$
.

4. 
$$(1-\frac{i}{3})(2+6i)$$
.

5. 
$$2(4+i)$$
.

6. 
$$i^3$$
.

8. 
$$\frac{1}{2+3i}$$
.

9. 
$$\frac{2+2i}{2-i}$$
.

10. 
$$\frac{3-5i}{3+2i}$$
.

MC1

## Section 2

# Géométrie des nombres complexes

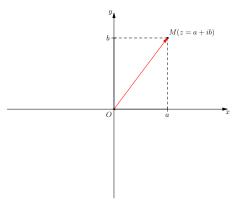
Université Paris Cité 2025-2026 MC1 13 / 75

## Représentation d'un nombre complexe

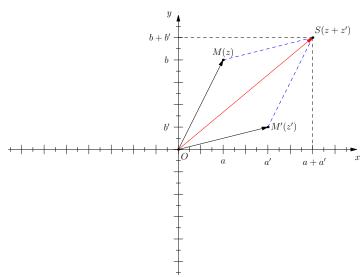
On se donne un repère orthonormée  $(O, \vec{i}, \vec{j})$ .

Soient  $a, b \in \mathbb{R}$  et considérons le point du plan M = (a, b).

Alors M représente le nombre complexe z = a + ib dans le plan. z est appelé l'affixe du point M et on note M(z).

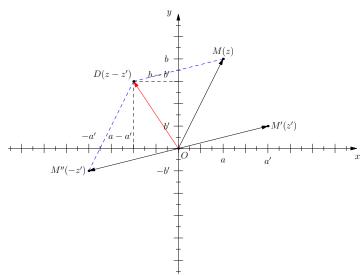


## Représentation de l'addition



Détermination graphique de z+z'

## Représentation de l'addition



Détermination graphique de z-z'

Université Paris Cité 2025-2026 MC1 16 / 75

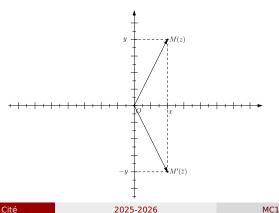
# Nombre complexe conjugué

### Definition (Conjugué)

Soit 
$$z = x + iy \in \mathbb{C}$$
.

On appelle nombre complexe conjugué de z, le nombre

$$\bar{z} = x - iy$$
.



Université Paris Cité

# Conjugué : règles de calcul

## Proposition

Soient  $z = x + iy \in \mathbb{C}$ . Donc  $\bar{z} = x - iy$ .

- ►  $Re(\bar{z}) = Re(z)$  et  $Im(\bar{z}) = -Im(z)$ .
- ►  $Re(z) = \frac{1}{2}(z + \bar{z})$  et  $Im(z) = \frac{1}{2i}(z \bar{z})$ .
- $ightharpoonup z \in \mathbb{R} \iff z = \bar{z}.$
- $ightharpoonup z \in i \mathbb{R} \iff z + \bar{z} = 0.$
- $\overline{(z_1+z_2)} = \overline{z_1} + \overline{z_2} \quad \overline{(\overline{z})} = z, \quad \overline{(z_1z_2)} = \overline{z_1z_2}.$

### **Exercice 3**

- 1. Calculer  $\overline{2+3i}$ .
- 2. Résoudre  $z + 2\overline{z} = 0$ .

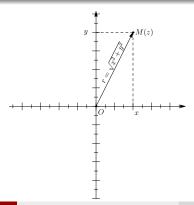
3. Prouver toutes les relations ci-dessus!

## Module

### Definition

On appelle module de  $z = x + iy \in \mathbb{C}$ , le réel positif

$$|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2}.$$



MC1

# Utilisation de la conjugaison pour le calcul de $\frac{z}{z'}$

Soient  $z, z' \in \mathbb{C}$  tels que  $z' \neq 0$ .

On a

$$\frac{z}{z'} =$$

## Module

### **Proposition**

Soient  $z, z' \in \mathbb{C}$ .

- $|z| = |-z| = |\bar{z}|, |x| \le |z|, |y| \le |z|.$
- $|z| = 0 \iff z = 0.$
- $|zz'| = |z||z'|, \quad \left|\frac{1}{z}\right| = \frac{1}{|z|}, \quad \left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}.$
- ▶  $|z+z'| \le |z| + |z'|$  (inégalité triangulaire pour le module).

## Exercice 4 (Excellent entraînement!)

- 1. Illustrer les relations qui peuvent l'être avec des dessins.
- 2. Prouver toutes ces relations.

## Lieux géométriques : le cercle

### Proposition

Soient  $z_0 \in \mathbb{C}$  et  $r \ge 0$ . L'ensemble

$$\{z\in\mathbb{C}/|z-z_0|=r\},$$

représente dans le plan complexe le cercle de centre  $\Omega$  (d'affixe  $z_0$ ) et de rayon r.

## Lieux géométriques : la médiatrice

### Proposition

Soient  $a, b \in \mathbb{C}$ . L'ensemble

$$\{z\in\mathbb{C}/|z-a|=|z-b|\},$$

représente dans le plan complexe la médiatrice du segment [AB], où A et B sont les points d'affixes a et b respectivement.

# Lieux géométriques : la droite

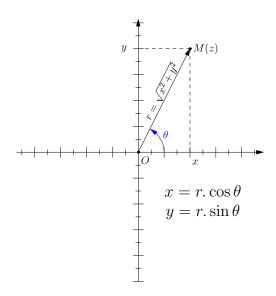
### Proposition

Soient  $a \in \mathbb{C}^*$  et  $\alpha \in \mathbb{R}$ . L'ensemble

$$\{z \in \mathbb{C} / \operatorname{Re}(az) = \alpha\},$$

représente dans le plan complexe une droite (qui passe par le point d'affixe  $\frac{\alpha}{3}$ ).

## Argument d'un nombre complexe



Université Paris Cité 2025-2026 MC1 25 / 75

## Argument d'un nombre complexe

#### Definition

On dit qu'un réel  $\theta \in \mathbb{R}$  est un argument du nombre complexe z = x + iy,  $z \neq 0$ , s'il vérifie

$$\begin{cases}
\cos(\theta) &= \frac{x}{\sqrt{x^2 + y^2}}, \\
\sin(\theta) &= \frac{y}{\sqrt{x^2 + y^2}}.
\end{cases}$$

On a alors

$$z = |z| \left( \frac{x}{\sqrt{x^2 + y^2}} + i \frac{y}{\sqrt{x^2 + y^2}} \right) = \underbrace{|z|(\cos \theta + i \sin \theta)}_{\text{\'ecriture trigonom\'etrique de } z}$$

## Argument d'un nombre complexe

### Definition (Argument principal)

Soit 
$$z = x + iy \in \mathbb{C}$$
,  $z \neq 0$ .

L'unique argument  $\theta \in \mathbb{R}$  de z satisfaisant  $\theta \in [0, 2\pi[$  est appelé l'argument principal de z et noté arg(z).

## Représentation de la multiplication

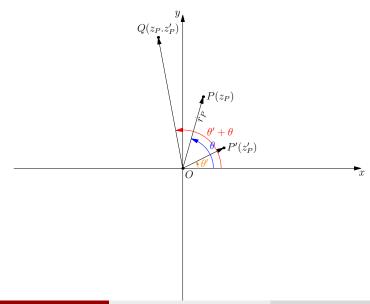
### Example

Prendre des exemples simples de nombres complexes z, z', les multiplier et interpréter géométriquement le résultat.

## Représentation de la multiplication

Université Paris Cité 2025-2026 MC1 29 / 75

## Représentation de la multiplication



Université Paris Cité 2025-2026 MC1 30 / 75

## Argument d'un produit

On observe donc la règle suivante :

## Proposition

Soient  $z, z' \in \mathbb{C}$ . On a

$$arg(zz') = arg(z) + arg(z')$$
 [2 $\pi$ ],

c-à-d existe  $k \in \mathbb{Z}$  tel que

$$arg(zz') = arg(z) + arg(z') + 2k\pi.$$

**Plus généralement :** multiplier deux nombres complexes semble revenir à

- multiplier leurs modules,
- ightharpoonup ajouter leurs arguments et prendre le résultat modulo  $2\pi$ .

## Section 3

Différentes manières d'écrire un nombre complexe

**Résumé.** Pour l'instant, deux manières d'écrire un nombre complexe  $z \in \mathbb{C}$ :

- **1**. algébrique : z = x + iy, avec  $x, y \in \mathbb{R}$
- 2. trigonométrique :  $z = |z|(\cos(\theta) + i\sin(\theta))$  avec  $\theta$  un argument de z.

### Remarque

Tous les  $\theta + 2k\pi$ ,  $k \in \mathbb{Z}$  sont des arguments de z.

# Exemples d'écritures trigonométriques.

Soit z = 1 + i. On a  $|z| = \sqrt{1^2 + 1^2} = \sqrt{2}$ . Donc  $z = \sqrt{2} \left( \frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}} \right) = \sqrt{2} \left( \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2} \right),$   $= \sqrt{2} \left( \cos(\frac{\pi}{4}) + i \sin(\frac{\pi}{4}) \right).$ 

Et 
$$arg(z) = \frac{\pi}{4}$$
.

D'où arg $(z) = \frac{\pi}{6}$ .

► Soit  $z = 3 + i\sqrt{3}$ . Donc  $|z| = \sqrt{3^2 + (\sqrt{3})^2} = \sqrt{12} = 2\sqrt{3}$  et  $z = 2\sqrt{3}\left(\frac{3}{2\sqrt{3}} + i\frac{\sqrt{3}}{2\sqrt{3}}\right) = 2\sqrt{3}\left(\frac{\sqrt{3}}{2} + i\frac{1}{2}\right)$ ,  $= 2\sqrt{3}\left(\cos(\frac{\pi}{6}) + i\sin(\frac{\pi}{6})\right)$ .

Université Paris Cité 2025-2026 MC1 34 / 75

## Exemples d'écritures trigonométriques.

► Soit 
$$z = 1 - i\sqrt{3}$$
, donc  $|z| = \sqrt{1^2 + (\sqrt{3})^2} = 2$  et

$$z=2\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)=2\left(\cos\left(\frac{5\pi}{3}\right)+i\sin\left(\frac{5\pi}{3}\right)\right).$$

D'où 
$$arg(z) = \frac{5\pi}{3}$$
.

Université Paris Cité 2025-2026 MC1 35 / 75

## Angles remarquables à connaître

| θ                       | 0 | $\frac{\pi}{6}$ | $\frac{\pi}{4}$      | π<br>-<br>3    | $\frac{\pi}{2}$ |
|-------------------------|---|-----------------|----------------------|----------------|-----------------|
| $\cos(\theta)$          | 1 | <u>√3</u><br>2  | <u>√2</u><br>2       | 1/2            | 0               |
| $sin(oldsymbol{	heta})$ | 0 | 1/2             | $\frac{\sqrt{2}}{2}$ | <u>√3</u><br>2 | 1               |

### Exercice 5

Mettre les nombres complexes suivants sous forme trigonométrique. 3.  $z_3 = 3\sqrt{3} - 3i$ .

1. 
$$z_1 = -3 + 3i$$
.

2. 
$$z_1 = 3 + 3i$$
.  
2.  $z_2 = 1 + \sqrt{3}i$ .

4. 
$$z_{1} = 8i$$
.

5. 
$$z_5 = -2$$
.

MC1 Université Paris Cité 2025-2026 36 / 75

## Définition : exponentielle complexe

Comment avez-vous défini la fonction exponentielle?

Definition (Exponentielle par les séries)

Pour  $x \in \mathbb{R}$ 

$$e^{x} \stackrel{\text{def.}}{=} 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \ldots = \sum_{n=0}^{+\infty} \frac{x^{n}}{n!}.$$

Correspond à la fonction exponentielle que vous connaissez!

## Définition : exponentielle complexe

## Remarque

La quantité  $1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\ldots$  est toujours bien définie en remplaçant  $x\in\mathbb{R}$  par  $z\in\mathbb{C}$ .

## Definition (Exponentielle complexe par les séries)

Pour  $z \in \mathbb{C}$ 

$$e^{z} \stackrel{\text{def.}}{=} 1 + z + \frac{z^{2}}{2!} + \frac{z^{3}}{3!} + \frac{z^{4}}{4!} + \ldots = \sum_{n=0}^{+\infty} \frac{z^{n}}{n!}.$$

#### Théorème

Soient  $z, z' \in \mathbb{C}$ . Alors

$$e^{z+z'}=e^z e^{z'}$$
.

## Définition : exponentielle complexe

#### Théorème

Soient  $z, z' \in \mathbb{C}$ . Alors

$$e^{z+z'}=e^z e^{z'}.$$

#### Corollaire

Soient  $z, z' \in \mathbb{C}$  et  $n \in \mathbb{Z}$ . Alors

- 1.  $\frac{1}{e^{z}} = e^{-z}$ .
- 2.  $\frac{e^{z}}{e^{z'}} = e^{z-z'}$ .
- 3.  $(e^z)^n = e^{nz}$ .
- 4.  $\overline{e^z} = e^{\overline{z}}$ .

## Formule d'Euler

#### Théorème (Formule d'Euler)

Soit  $\theta \in \mathbb{R}$ , alors

$$e^{i\theta}=\cos(\theta)+i\sin(\theta).$$

#### Démonstration.

Hors programme! Idées sans les détails

https://fr.wikipedia.org/wiki/Formule\_d'Euler#
 /media/Fichier:Euler's\_formula\_proof.gif

## Écriture exponentielle des nombres complexes

## Théorème (Écriture exponentielle)

Soit  $z \in \mathbb{C}$ . Soit  $\theta \in \mathbb{R}$  un argument de z. Alors

$$z = |z|e^{i\theta}$$
.

#### Corollaire (Argument d'un produit)

Soient  $z, z' \in \mathbb{C}$ . On a vu  $\arg(zz') = \arg(z) + \arg(z')[2\pi]$ .

#### Démonstration.

On a 
$$z=|z|e^{i\theta}$$
,  $z'=|z'|e^{i\theta'}$ , avec  $\theta=\arg(z)$  et  $\theta'=\arg(z')$ . Donc

$$zz' = |z||z'|e^{i\theta}e^{i\theta'} = |zz'|e^{i(\theta+\theta')},$$

donc, 
$$\theta + \theta'$$
 est un argument de  $zz'$ , donc  $\arg(zz') = (\theta + \theta')[2\pi]$ .

Université Paris Cité 2025-2026 MC1 41 / 75

## Écriture exponentielle des nombres complexes

## Corollaire (Argument d'un quotient)

Soient 
$$z, z' \in \mathbb{C}$$
,  $z' \neq 0$ . On a  $\arg\left(\frac{z}{z'}\right) = \arg(z) - \arg(z')[2\pi]$ .  
En particulier  $\arg\left(\frac{1}{z'}\right) = -\arg(z')[2\pi]$ .

#### Démonstration.

On a 
$$z=|z|e^{i\theta}$$
,  $z'=|z'|e^{i\theta'}$ , avec  $\theta=\arg(z)$  et  $\theta'=\arg(z')$ . Donc 
$$\frac{z}{z'}=\frac{|z|}{|z'|}e^{i\theta}\frac{1}{e^{i\theta'}}=\left|\frac{z}{z'}\right|e^{i(\theta-\theta')},$$

donc  $\theta - \theta'$  est un argument de  $\frac{z}{z'}$ , donc  $\arg\left(\frac{z}{z'}\right) = (\theta - \theta')[2\pi]_{\Box}$ 

Université Paris Cité 2025-2026 MC1 42 / 75

## Les nombres complexes de module 1

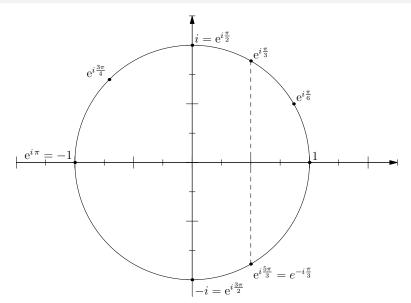
#### Definition (L'ensemble U)

On appelle ensemble des nombres complexes de module 1, ou cercle unité, l'ensemble

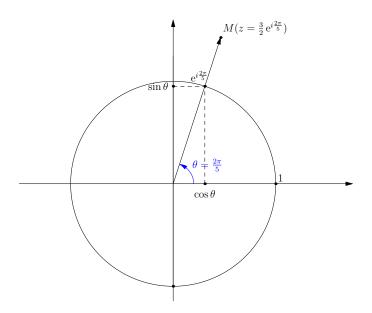
$$\begin{split} \mathbb{U} &= \{ z \in \mathbb{C} / |z| = 1 \}, \\ &= \{ \cos(\theta) + i \sin(\theta) / \theta \in \mathbb{R} \} = \{ \cos(\theta) + i \sin(\theta) / \theta \in [0, 2\pi[]\}, \\ &= \{ e^{i\theta} / \theta \in \mathbb{R} \} = \{ e^{i\theta} / \theta \in [0, 2\pi[]\}. \end{split}$$

Université Paris Cité 2025-2026 MC1 43 / 75

## Les nombres complexes de module 1



Université Paris Cité 2025-2026 MC1 44 / 75



MC1

## Section 4

## **Applications**

## Théorème (Formule de Moivre)

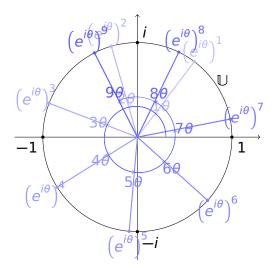
Soient  $\theta \in \mathbb{R}$  et  $n \in \mathbb{Z}$ 

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta).$$

#### Démonstration.

On a 
$$(\cos(\theta) + i\sin(\theta))^n = (e^{i\theta})^n = e^{in\theta} = \cos(n\theta) + i\sin(n\theta)$$
.

MC1



Premières valeurs de  $\left(e^{i\theta}\right)^n=e^{in\theta}=\cos(n\theta)+i\sin(n\theta)$ .

#### **Exercice 6**

Quelle condition sur  $\theta \in \mathbb{R}$  pour que la suite  $\left(e^{in\theta}\right)_{n \in \mathbb{N}}$  soit périodique?

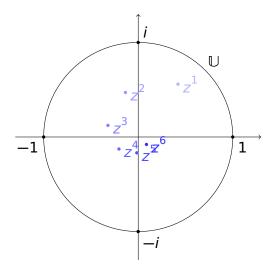
## Puissance entière d'un nombre complexe

## **Proposition**

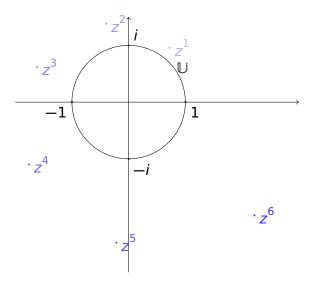
Soit  $z \in \mathbb{C}$  et  $n \in \mathbb{Z}$ . On a  $z = |z|e^{i\theta}$  avec  $\theta \in \mathbb{R}$  un argument de z. Alors

$$z^n = (|z|e^{i\theta})^n = |z|^n e^{in\theta} = |z|^n (\cos(n\theta) + i\sin(n\theta)).$$

En particulier  $arg(z^n) = n arg(z)[2\pi]$ .



Premières valeurs de  $z^n$  lorsque |z| < 1.



Premières valeurs de  $z^n$  lorsque |z| > 1.

Université Paris Cité 2025-2026 MC1 52 / 75

**Problème.** Soit  $a \in \mathbb{C}$ . On recherche les deux racines carrées de a i.e. les  $z \in \mathbb{C}$  tel que  $z^2 = a$ .

## Méthode 1 : via l'écriture exponentielle de a.

## Proposition

Notons  $\theta = \arg(a)$ , donc  $a = |a|e^{i\theta}$ . Alors les racines carrées de a sont

$$\pm\sqrt{|a|}e^{i\frac{\theta}{2}}.$$

#### Démonstration.

Soit  $\varepsilon \in \{-1, 1\}$  et posons  $z = \varepsilon \sqrt{|a|} e^{i\frac{\theta}{2}}$ . Alors

$$z^{2} =$$

### Example

Déterminer les racines carrées complexes de  $\Delta = 1 + i\sqrt{3}$ .

## Remarque

Parfois il n'est pas évident de trouver un argument  $\theta$  tel que  $a = |a|e^{i\theta}$ .

## Méthode 2 : par identification des écritures algébriques.

Notons  $a = \alpha + i\beta$ , avec  $\alpha, \beta \in \mathbb{R}$ . Soit  $z = x + iy \in \mathbb{C}$ . On a

$$z^{2} = a \iff (x + iy)^{2} = \alpha + i\beta,$$

$$\Leftrightarrow x^{2} - y^{2} + 2ixy = \alpha + i\beta,$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = \alpha, \\ 2xy = \beta, \end{cases}$$

$$\Leftrightarrow \begin{cases} x^{2} - y^{2} = \alpha, \\ 2xy = \beta, \\ x^{2} + y^{2} = \sqrt{|a|} \end{cases}$$

## Example

Trouver les racines carrées de 3 + 4i.

## Cas général : équation du second degré

**Problème.** On souhaite trouver les deux racines de l'équation polynomiale de degré 2 :  $az^2 + bz + c = 0$ , avec  $a, b, c \in \mathbb{C}, a \neq 0$ .

Proposition Notons  $\Delta = b^2 - 4ac \in \mathbb{C}$  le discriminant de l'équation. Soit  $\delta \in \mathbb{C}$  une racine carrée (complexe) de  $\Delta$ . Alors l'ensemble des racines de l'équation  $az^2 + bz + c = 0$  est

$$\left\{\frac{-b-\delta}{2a}, \frac{-b+\delta}{2a}\right\}.$$

## Cas général : équation du second degré

#### Démonstration.

$$az^2 + bz + c =$$



MC1

## Cas général : équation du second degré

#### Example

Trouver les racines complexes des équations suivantes.

- 1.  $z^2 + z 6 = 0$ .
- 2.  $2z^2 2z + 1 = 0$ .
- 3.  $iz^2 2z + 1 = 0$ .

## Somme de puissances

#### Proposition

Pour tous  $a, b \in \mathbb{C}$  et tout  $n \in \mathbb{N}^*$ 

$$b^{n+1} - a^{n+1} = (b-a)(b^n + b^{n-1}a + b^{n-2}a^2 + \dots + b^1a^{n-1} + a^n),$$
  
=  $(b-a)\sum_{k=0}^n b^{n-k}a^k = (b-a)\sum_{k=0}^n b^ka^{n-k}.$ 

## Somme de puissances

## Corollaire (Somme géométrique)

Pour tout  $z \in \mathbb{C}$  et tout  $n \in \mathbb{N}$ ,

$$z^{n+1} - 1 = (z-1)(1+z+z^2+\cdots+z^n)$$
, et donc, si  $z \neq 1$ 

$$1+z+z^2+\cdots\cdots+z^n=\frac{1-z^{n+1}}{1-z}.$$

## Le binôme de Newton

#### Proposition (Binôme de Newton)

Pour tous  $a, b \in \mathbb{C}$  et tout  $n \in \mathbb{N}$ 

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k,$$

avec 
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 et  $k! = 1 \times 2 \times \cdots \times k$ .

#### Example

- $(a+b)^2 = a^2 + 2ab + b^2.$
- $(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3.$
- $(a+b)^6 = a^6 + 6a^5b + 15a^4b^2 + 20a^3b^3 + 15a^2b^4 + 6ab^5 + b^6.$

## Le binôme de Newton

#### **Exercice 7**

Soit z = 2 - i. Mettre  $z^4$ , puis  $1 + z + z^2 + z^3$  sous la forme algébrique.

Université Paris Cité 2025-2026 MC1 63 / 75

## cos et sin via exponentielles complexes

## **Proposition**

Soit  $\theta \in \mathbb{R}$ . Alors

$$cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et  $sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$ 

#### Démonstration.

Par la formule d'Euler :  $e^{i\theta} = \cos(\theta) + i\sin(\theta)$ . Donc

Université Paris Cité 2025-2026

Soient  $\theta \in \mathbb{R}$ ,  $n \in \mathbb{N}^*$ . On souhaite transformer  $\cos(\theta)^n$  et  $\sin(\theta)^n$  en somme de  $\cos(k\theta)$  et  $\sin(k\theta)$  pour  $k \in \{1, ..., n\}$ .

Très utile en MC2 pour les calculs de primitives!

#### Méthode.

- ► Remplacer  $cos(\theta)$  et  $sin(\theta)$  par leurs expressions via exponentielles complexes,
- développer (éventuellement par binôme de Newton),
- regrouper les exponentielles dont les arguments dépendent de  $k\theta$  pour faire apparaître  $\cos(k\theta)$  et  $\sin(k\theta)$ .

#### Example

Soit  $\theta \in \mathbb{R}$ . On veut linéariser  $\cos(\theta)^3$ .

$$\cos(\theta)^{3} = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{3}, 
= \frac{1}{2^{3}} \left(e^{3i\theta} + 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} + e^{-3i\theta}\right), 
= \frac{1}{2^{3}} \left(\left(e^{3i\theta} + e^{-3i\theta}\right) + 3\left(e^{i\theta} + e^{-i\theta}\right)\right), 
= \frac{1}{2^{3}} (2\cos(3\theta) + 6\cos(\theta)) = \frac{1}{4}\cos(3\theta) + \frac{3}{4}\cos(\theta).$$

Université Paris Cité 2025-2026 MC1 66 / 75

#### Example

Soit  $\theta \in \mathbb{R}$ . On veut linéariser  $\sin(\theta)^3$ .

$$\begin{aligned} \sin(\theta)^{3} &= \left(\frac{e^{i\theta} + e^{-i\theta}}{2i}\right)^{3}, \\ &= \frac{1}{(2i)^{3}} \left(e^{3i\theta} - 3e^{2i\theta}e^{-i\theta} + 3e^{i\theta}e^{-2i\theta} - e^{-3i\theta}\right), \\ &= \frac{1}{(2i)^{3}} \left(\left(e^{3i\theta} - e^{-3i\theta}\right) - 3\left(e^{i\theta} - e^{-i\theta}\right)\right), \\ &= \frac{1}{(2i)^{3}} \left(2i\sin(3\theta) - 6i\sin(\theta)\right) = -\frac{1}{4}\sin(3\theta) + \frac{3}{4}\sin(\theta). \end{aligned}$$

Université Paris Cité 2025-2026 MC1 67 / 75

#### **Exercice 8**

Linéariser  $\cos(\theta)^4$  et  $\sin(\theta)^4$ .

## Application : procédé inverse à la linéarisation

Soient  $\theta \in \mathbb{R}$ ,  $n \in \mathbb{N}^*$ . On souhaite transformer  $\cos(n\theta)$  et  $\sin(n\theta)$  en somme de  $\cos(\theta)^k$  et  $\sin(\theta)^k$  pour  $k \in \{1, ..., n\}$ .

#### Méthode.

- Écrire  $cos(n\theta)$ , respectivement  $sin(n\theta)$ , comme la partie réelle, resp. imaginaire, de  $e^{in\theta}$ ,
- utiliser la formule d'Euler,
- développer.

## Application : procédé inverse à la linéarisation

## Example

Soit 
$$\theta \in \mathbb{R}$$
. On a  $\cos(4\theta) = \operatorname{Re}(e^{i4\theta}) = \operatorname{Re}((e^{i\theta})^4) = \operatorname{Re}((\cos(\theta) + i\sin(\theta))^4)$ ,  $\sin(4\theta) = \operatorname{Im}(e^{i4\theta}) = \operatorname{Im}((e^{i\theta})^4) = \operatorname{Im}((\cos(\theta) + i\sin(\theta))^4)$ .

Or

$$(\cos\theta + i\sin\theta)^4 = \cos(\theta)^4 + 4i\cos(\theta)^3\sin(\theta) + 6i^2\cos(\theta)^2\sin(\theta)^2 + 4i^3\cos(\theta)\sin(\theta)^3 + i^4\sin(\theta)^4.$$

Donc

$$\cos(4\theta) = \cos(\theta)^4 - 6\cos(\theta)^2\sin(\theta)^2 + \sin(\theta)^4,$$
  

$$\sin(4\theta) = 4\cos(\theta)^3\sin(\theta) - 4\cos(\theta)\sin(\theta)^3.$$

## Application : procédé inverse à la linéarisation

#### **Exercice 9**

Soit  $\theta \in \mathbb{R}$ . Calculer  $\cos(3\theta)$  en fonction de  $\cos(\theta)$  et  $\sin(\theta)$ .

Université Paris Cité 2025-2026 MC1 71 / 75

## Sinus d'une somme, cosinus d'une somme

Il est important de savoir retrouver rapidement les formules suivantes. Soient  $a, b \in \mathbb{R}$ .

$$\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b),$$
  

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b).$$

**Méthode.** On passe de nouveau par les exponentielles complexes.

Université Paris Cité 2025-2026 MC1 72 / 75

## Somme de sinus, somme de cosinus

Il est important de savoir retrouver rapidement les formules suivantes. Soient  $a, b \in \mathbb{R}$ .

$$\sin(a) + \sin(b) = 2\sin\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right),$$

$$\sin(a) - \sin(b) = 2\cos\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right),$$

$$\cos(a) + \cos(b) = 2\cos\left(\frac{a+b}{2}\right)\cos\left(\frac{a-b}{2}\right),$$

$$\cos(a) - \cos(b) = -2\sin\left(\frac{a+b}{2}\right)\sin\left(\frac{a-b}{2}\right).$$

**Méthode.** On passe de nouveau par les exponentielles complexes.

Université Paris Cité 2025-2026 MC1 73 / 75

## Somme de sinus, somme de cosinus

 Université Paris Cité
 2025-2026
 MC1
 74 / 75

## Quelques relations très utiles, à connaître

Soit  $\theta \in \mathbb{R}$ .

$$\cos\left(\frac{\pi}{2} - \theta\right) = \\ \cos\left(\frac{\pi}{2} + \theta\right) = \\ \cos\left(\pi - \theta\right) = \\ \cos\left(\pi + \theta\right) = \\ \sin\left(\frac{\pi}{2} - \theta\right) = \\ \sin\left(\frac{\pi}{2} + \theta\right) = \\ \sin\left(\pi - \theta\right) = \\ \sin\left(\pi + \theta\right) =$$