

Licence $1^{\text{ère}}$ année, 2025-2026, Mathématiques et Calcul 1 (MC1)

Ensemble des sujets de l'interro no1

Sujet A

Exercice 1 (Logique et quantificateurs)

1. Écrire la négation de l'assertion suivante :

$$\forall x \in]0,1[, \bigg(\forall y \in [-1,0[\Rightarrow xy \in]-1,0[\bigg).$$

2. Traduire à l'aide de quantificateurs l'assertion suivante ainsi que sa négation. Soit $A \subset \mathbb{R}$. A est bornée (c'est-à-dire, A est majorée, et A est minorée.)

Exercice 2 (Réunion d'intervalles)

Soit

$$I:=\bigcup_{n=1}^{\infty}\left[0,\frac{n-1}{n+1}\right].$$

Montrer, par double inclusion, que I = [0, 1].

Exercice 3 (Bijections)

- 1. Donner une bijection de $\{1,2,3\}$ vers $\{1,\frac{1}{2},\frac{1}{3}\}$.
- 2. Donner une bijection de $[1, +\infty[$ vers]0, 1], et montrer que votre application est bijective.

Exercice 4 (Bonus - Partie fractionnaire)

- 1. Pour $x \in \mathbb{R}$, définir la **partie fractionnaire** (notée F(x)). Par exemple F(2.3) = 0.3, F(3) = 0, F(-1.1) = 0.9.
- 2. Représenter le graphe de la fonction $x \mapsto F(x)$.
- 3. Soient $x \in \mathbb{R}$ et $k \in \mathbb{Z}$. Montrer que F(x+k) = F(x).
- 4. Soient $x, y \in \mathbb{R}$. A-t-on en général F(x+y) = F(x) + F(y)? Justifier.

Sujet B

Exercice 1

Soit

$$A = \{ x \in \mathbb{R} \mid 1 < x \le 3 \}, \quad B = \{ x \in \mathbb{R} \mid |x| < 10 \}.$$

- 1. Montrez que $A \subset B$.
- 2. Déterminez, s'il existent, un majorant de A et un majorant de B.

Exercice 2

Soit $I \subset \mathbb{R}$ une partie de \mathbb{R} .

- 1. Donner la définition formelle (avec quantificateurs) de ce que signifie que I est un intervalle, puis écrire la négation de cette définition.
- 2. Montrer que l'ensemble \mathbb{Z} n'est pas un intervalle.

Exercice 3

Soient A et B deux sous-ensembles de \mathbb{R} tels que $A \subset B$.

Montrez que si A n'est pas majoré, alors B n'est pas majoré.

Exercice 4

Soit $F: \mathbb{N} \to \mathbb{N}$ l'application définie par

$$\forall n \in \mathbb{N}, F(n) = n^2.$$

Montrez que F est injective.

Sujet C

Exercice 1

Les assertions suivantes sont-elles vraies ou fausses? Le démontrer.

- 1. $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, x + y \leq 0.$
- $2. \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y > 0.$
- 3. $\exists x \in \mathbb{R}, \forall y \in [2; +\infty[, x < y]$.

Exercice 2

Soient A et B deux sous-ensembles de \mathbb{R} .

1. Montrer que

$$(B \subset A \text{ et } \forall a \in A, a \leqslant 1) \implies (\forall b \in B, b \leqslant 1)$$

$$\tag{1}$$

2. Ecrire la négation de l'assertion (1).

Sujet D

Exercice 1

Soit $E = \{a, b, c\}$ un ensemble. Est-ce que les assertions suivantes ont du sens mathématiquement? Donner une courte justification.

- $1. a \in E$
- $2. a \subset E$
- $3. \{a\} \subset E$
- $4. (a, b) \in E$
- $5. \emptyset \in E$
- $6. \emptyset \subset E$

Exercice 2

- 1. Les assertions suivantes sont-elles vraies ou fausses? Donner une courte justification.
 - a) $\exists x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$
 - b) $\forall x \in \mathbb{R}, \forall y \in \mathbb{R} \quad x + y > 0$
 - c) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} \quad x + y > 0$
- 2. Donner leurs négations.

Exercice 3

Soient f,g deux fonctions de $\mathbb R$ dans $\mathbb R$. Traduire en termes de quantificateurs les expressions suivantes :

- 1. f est majorée.
- 2. f ne s'annule jamais.

- 3. f n'est pas la fonction nulle.
- 4. f n'a jamais les mêmes valeurs en deux points distincts.

Sujet E

Exercice 1

Les propositions suivantes sont-elles vraies ou fausses?

- 1. $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \ y^2 \leqslant x$
- 2. $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, \ x \geqslant y 1$

Exercice 2

Représenter graphiquement les sous ensembles de \mathbb{R}^2 suivants :

- 1. $A_1 = \{(x, 2x)/x \ge 0\} \cup \{(x, y)/-1 \le y \le 1\}$
- 2. $A_2 = \{(x,y)/y \ge x\} \cap \{(x,y)/(x-1)^2 + (y-1)^2 \le 1\}$

Exercice 3

Soient A et B deux sous ensembles de \mathbb{R} . Ecrire à l'aide de quantificateurs l'assertion suivante, ainsi que sa négation.

1. Si A est minoré, alors A est inclus dans B.

Sujet F

Exercice 1

1. Écrire à l'aide de quantificateurs l'assertion suivante puis la démontrer :

L'ensemble des entiers relatifs \mathbb{Z} n'est pas un intervalle de \mathbb{R} .

- 2. Soient A un sous-ensemble majoré de \mathbb{R} et $B = \{x + 1 / x \in A\}$. Démontrer que B est majoré.
- 3. Démontrer l'inégalité triangulaire : $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, |x+y| \leq |x| + |y|$.
- 4. Soit $f: \mathbb{R} \times [0;1] \to \mathbb{R}$ la fonction définie par f(x;y) = x + y. Démontrer que f est surjective.