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Durée 2h ou 2h40 pour 1/3 temps.
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Total sujet : 38.5pt. Le baréme est uniquement fourni a titre indicatif.

Total : 37.5 =7+ 4 + 11.5 + 8.5 + 6.5

Exercice 1 (Melting pot) (7pt)
Les questions de cet exercice sont indépendantes.

1. Effectuer les représentations graphiques demandées ci-dessous. Pour cette question uniquement, aucune
justification n’est attendue mis & part les éléments de construction ou calculs que vous jugerez utiles a la
compréhension.

a) Représenter dans le plan complexe le cercle trlgonometrlque et y placer les nombres complexes z1, 23, 23, 24, 25
suivants : Z1 =€ 3 , 29 = —Z1, 23 = 25, Z4 = € 6 , 25 = 24.
b) Représenter dans le plan complexe I’ensemble suivant A = {z € C/Re(z) =2}U{z € C/ Im(z) = —1}.
c) Représenter le graphe de la fonction arctan.
d) Représenter le graphe d’une fonction décroissante et minorée.
2. Soit 'application f : R — R que 'on suppose strictement croissante. Montrer que f est injective.
3. Soit la suite (uy)nen définie par
n" + cos(n)
3n3 —n+1
2
n

On considére de plus une suite (vy,)nen satisfaisant pour tout n € N, v, > ;.

VneN, wu,=

a) Déterminer un équivalent le plus simple possible de la suite (uy,)nen-
b) En déduire les limites éventuelles de (up)nen €t (vpn)nen-

Correction.
7=1(1.5+05+05+05)+1+ 15+ 1.5

1. a) (1.5pt)
b) (0.5pt)
c) (0.5pt)

2. Soient z, 2’ € R tels que f(z) = f(2). Il S’agit de prouver que x = z’. Par ’absurde supposons que x # 2.
Siz < 2/, alors par stricte croissance de f, on a f(x) < f(2), ce qui est impossible puisque f(z) = f(z').
Sinon = > 2’ et par stricte croissance de f, on obtient cette fois f(z) > f(2’), donnant encore une

contradiction.

Par conséquent x # 2’ et donc f est injective (1pt).
3. a) On a n" + cos(n) ~ n" car "nt:iss(") 1+ COS&") — 1 puisque (cos(n))nen est bornée et
n——+0o0
n—n —— 0, d’ont COS(”) ——— 0 par produit d’une suite bornee et d’une suite de limite nulle.
n—+oo n—-+o0

3
Puis3n® —n+1 ~ 3ndcar3n—ntl —q_ L 4 L 1
n—-+oo 3n3 3n? 3n? n—-+oo

Ainsi par quotient d’équivalents, on obtient u, ~ ?? 3 (1.5pt).
n——+oo °N

. , n N
b) On a par croissance comparée que 3n® = o (n"), donc (—g 5) . tend vers +oo par passage a
n—+00 n=/neN

I'inverse d’une suite strictement positive APCR. Or u, N 3n3, donc u tend aussi vers +o0o.
n—

Comme u tend vers +oo, c’est aussi le cas de u? par passage au carré (ou produit de deux suites qui
tendent vers +00). Comme pour tout n € N, v, > u,, par passage a la limite dans l'inégalité, on a

Up ——— +oo (1.5pt).
n—-+



Exercice 2 (4pt)
Soient ¢ €]0,1[ et M > 0. Soit (ay)ken une suite telle que pour tout k € N, a; € [0, M]. On considére alors
n

la suite (uy)nen définie pour tout n € N par u,, = Z arq”.
k=0
1. Montrer que la suite (uy)nen est croissante.

n
2. a) Soit n € N. Donner la valeur de Z ¢~
k=0

M
b) En déduire que pour tout n € N, u,, < T
)
3. Montrer que la suite (u,)pen converge. On note £ € R sa limite.
M
4. Montrer que 0 < £ < T2
—q

Correction.
=0.75 + (0.5 1) +0.75 + 1

n+1

1. Soit n € N, on a tpt1 — up = Zié aqu - ZZ:O aqu = ap+19q > 0 car la suite a est positive et ¢ > 0.

Ainsi u est bien croissante (O 75pt).

2. a)OnaY} ,¢" =1 q (0 5pt).
b) Soit n € N. Puisque ¢ > O et pour tout k € N, ar, < M on a donc arq® < Mg et donc

i n+1 1 M
n:Zakq gZMq MZQ 1_q ngfq 1_q(1[)f)

3. D’apres (L, (un)nen est croissante et d’apres 2)l (un)nen est majorée. Donc par le théoréme de la limite
monotone, (u,)nen est convergente (0.75pt).

4.Soit n € N, on aup, = 5, apq® >0 car ¢ > 0 et a; > 0 pour tout k € N. Ainsi, par passage & la limite
dans l’inégalité on obtient ¢ > 0.

D’aprés [2 on a pour tout n € N, u,, < 1 7 Donc par passage a la limite dans cette inégalité, £ < 1—{{}.
On a bien I'inégalité souhaitée : 0 < £ < #q (1pt).

Exercice 3 (8.5pt)
Soit f :x — \/:Ee_%.
1. Déterminer le domaine de définition naturel de f.
2. a) Quelle est la limite de f en 4007
b) Donner un équivalent le plus simple possible de f en +oc.

3. Montrer que f est dérivable sur R en précisant bien les régles utilisées pour la justification et calculer sa
dérivée sur R% . En déduire sa monotonie.

4. Montrer que f est prolongeable par continuité en 0. On notera g le prolongement par continuité obtenu.
On prendra soin de définir précisément g.

5. Montrer que g est continue sur R,.

6. En étudiant le taux d’accroissement de g en 0, montrer que la fonction g est dérivable en 0. Donner ¢'(0).

Correction.
8.5 =05+ (1+0.75) +2+ 1.5 +1+ 175

1. La fonction inverse est définie sur R* et la fonction racine carrée sur R;. Ainsi le domaine de définition
naturel de f est Dy = R (0.5pt).

2. a)x € Ry — —% tend vers 0 en +o0o et exponentielle vers 1 en 0, donc par composée de limites,

€ Ry — e~ tend vers 1 en +o0. Puis € RY — /z tend vers +00 en 400, donc par produit de limites,
lim f( ) = 400 (1pt).

T—+00

b) On a f(x) ~ +/z, car pour tout = > 0, o) — o2 1(0.75pt).

r—+00 x T—~+00

"



3

3. La fonction x +— —% est dérivable sur R* et exponentielle est dérivable sur R, donc par composée de

. L. 1.
fonctions dérivables, on a x + e” = dérivable sur R .

Ensuite la fonction racine carrée est dérivable sur RY, donc par produit de fonctions dérivables, f est
dérivable sur R* (1pt).

Soit > 0, on a

1 1 1
fl(x)=e= (——l——)
(@) N
Puisque pour tout 2 > 0, on a f'(x) > 0, la fonction f est strictement croissante sur R (1pt).

4. La limite en 0 de z € R} —% est —oo et la limite en —oo de exponentielle est 0, donc par composée de

limites, z € R} — e"F a pour limite 0 en 0. Comme x € R% + /z a pour limite 0 en 0, on déduit donc
par produit de limites que lirr(1) f(z)=0(1pt).
T—

Alternativement, on peut remarquer que la fonction f étant strictement croissante sur R
et minorée par 0, alors par le théoréme de la limite monotone, f admet une limite finie en
0. Ce raisonnement ne permet cependant pas d’identifier la valeur de la limite.

Ainsi la fonction f est prolongeable par continuité en 0. Son prolongement par continuité est alors par

définition
PR fx), s?:v>0,
0, six=0.

0.5pt pour cette derniére partie sur la définition du prolongement par continuité.
5. Par définition, en tant que prolongement par continuité en 0, g est continue en 0. La fonction f est continue

sur R* car dérivable sur RY. Or comme pour tout x > 0, g(x) = f(x), g est donc également continue sur
R* . Finalement g est continue sur Ry (Ipt).

6. Le taux d’accroissement de g en 0 vaut pour tout x > 0,

roo(e) = S =90 _ @) e

x—0 x NS
Ainsi, par croissances comparées (la limite nulle du terme en exponentielle 'emporte sur la limite valant
400 du terme en —-)

(0.75pt)

li = 0. (0.5pt

Sm T9,0(2) (0.5pt)

Cette limite étant finie, g est dérivable en 0, et on a ¢’(0) = 0 (0.5pt).

Jusqu’a +1pt bonus si une justification détaillée de la limite de 740 en 0 est fournie. Cf les commentaires

qui suivent.

La référence a la croissance comparée dans la justification de la limite de 7,0 en 0 est un
peu rapide car cette limite n’est pas référencée dans le cours. Cependant on peut se ramener
A une croissance comparée référencée aprés quelques manipulation détaillées maintenant.

La fonction h : t € R} te~! admet pour limite 0 en 400 par croissances comparées.
Comme la fonction z € RY % tend vers +oo en 0, par composée de limites, x € RY}

1
h () tend vers 0 en 0.

Exercice 4 (11.5pt)
On consideére la suite (uy,)nen définie par

ug = 0,

Upt+1 = V12 4+ uy.
1. Calculer uq et us.
2. Montrer que pour tout n € N, 0 < u,, < 4.

3. On considére la fonction
f:0,4 — R
r — 124+ z.



a) Justifier que f est dérivable sur [0,4].
b) Etudier les variations de f sur [0, 4].
¢) En déduire, par récurrence, que la suite (u,)nen est croissante.

4. Montrer que pour tout n € N

1
[un+1 — 4 < 1|un — 4.

5. En déduire que, pour tout n € N
1

un, — 4| < T

6. Montrer, uniquement a ’aide de la définition de la convergence d’une suite, que la suite (4,1%1)” converge

vers 0.

eN

7. En déduire que la suite (up)nen converge et déterminer sa limite.

8. Uniquement grace aux résultats des questions [2.| et prouver de nouveau la convergence de (uy)nen €t
déterminer sa limite.

Correction.
11.5=05+1+ (075 +0.5 +1) + 1+ 1+ 25+ 0.7 + 2.5

1.On awu; =vV12, wuy =12+ /12 (0.5pt).
2. Initialisation. On a ug = 0 € [0, 4].

Hérédité. Soit n € N. Supposons que 0 < u, < 4, alors 12 < 12 + u,, < 16, donc par croissance de la
fonction racine carré sur Ry, 0 < V12 < up41 < 4. Ceci termine la récurrence (1pt).

3. a) x — 12 + x est dérivable sur [0, 4] avec valeurs dans [12,16] donc dans R, et = — \/x est dérivable
sur R% , donc f est dérivable sur [0,4] en tant que composée de fonctions dérivables (0.75pt).

b) On a pour tout x € [0,4], f'(x) = Nﬁ > 0, donc f est strictement croissante sur [0, 4] (0.5pt).

¢) Montrons par récurrence que pour tout n € N, on a u, < Upy1.

Initialisation. On a u; = v/12 > ug = 0.

Hérédité. Soit n € N. On suppose que u, < un41. La suite u est a valeurs dans [0, 4] et la fonction f est
strictement croissante sur [0,4], donc up+1 = f(un) < f(tun+1) = Upte. On a bien prouvé la propriété au
rang n + 1, donc la récurrence est terminée (1pt).

4. Soit n € N, on a |up+1 —4| = |VI2 +u, —4| = %, aprés multiplication par I’expression conjuguée.
Comme |\/I2+ u, + 4| = VI2+ u, +4 > 4, on obtient |u,q1 — 4 < §|un — 4] (1pt).
5. Montrons la propriété par récurrence.

Initialisation. On a |up — 4| =4 < 4%1 =4.

Hérédité. Soit n € N. Supposons que |u, — 4| < 4"%1’ alors |up41 — 4| < flun, — 4| < 5. Ceci termine la
récurrence (1pt).
6. Soit € > 0. Posons N = max (E (1 — EEZ%) + 1,0) € N.Soitn > N. Alorsn > E (1 — Egi;)—kl > 1—%,
donc en particulier n > 1 — }28

est croissante 4771 > %, i.e. 4n1_1 < . La suite (471%1)

, soit encore (n — 1)In(4) > —In(e), d’ou par passage a '’exponentielle qui

nen converge bien vers 0 (2.5pt).

7.0n a pour tout n € N, 0 < |uy, — 4| < M%l et <4”1_1)n€N

ment |u, — 4] —— 0, i.e. u converge vers 4 (0.75pt).
n—-+00

converge vers 0, donc par le théoréme d’encadre-

8. 2.5pt pour le tout. Environ moitié/moitié pour chacune des parties du raisonnement.

La suite (uy)nen est croissante et majorée, donc convergente par le théoréme de la limite monotone. On
note ¢ sa limite. D’aprés la question 2], comme pour tout n € N, 0 < u,, < 4, par passage a la limite dans
les inégalités, on obtient ¢ € [0, 4].

La fonction f est continue sur [0, 4] car dérivable sur [0, 4], donc continue en ¢, ainsi nécessairement £ = f({)
(corollaire de la caractérisation séquentielle de la continuité). Ainsi ¢ satisfait 1'équation ¢? = ¢ + 12, dont
les deux solutions sont —3 et 4. Comme ¢ > 0, on a déduit que £ = 4.

Exercice 5 (6.5pt)
Soient n € N*, w € C tel que |[w| =1et P = X" —wX 4+ 1 € C[X].

1. Déterminer le polynéme dérivé de P.



5

2. On veut montrer que P ne peut admettre que des racines simples dans C. On suppose par ’absurde que
P admet une racine de multiplicité m € N* avec m > 2 et que 'on note o € C.

a) Justifier que n > 2.

n 1
b) Montrer que « = ——w puis que o’ = .
n—1 n—1
¢) Conclure.
3. a) Justifier que P =a(X —a1)(X —ag) - (X —ay) ot a,aq,...,a, sont des nombres complexes.

b) Préciser la valeur de a.
c) Montrer que pour tout ¢ € {1,...,n}, pour tout j € {1,...,n},i# j = a; # .

Correction.
6.5 =05+ (1 + 2.5+ 0.75) + (0.5 + 0.5 + 0.75)
1.Ona P =nX""! —w(0.5pt).

2. a) Comme « est racine de multiplicité m de P, il existe @ € C[X] tel que P = (X — )@, donc
deg(P) = deg((X — a)™) + deg(Q) et deg(Q) > 0 car @ # 0, donc n = deg(P) > m > 2 (Ipt).

b) Comme « est une racine de P, on a P(a) = 0, donc o™ —wa+1 = 0, ce qui se réécrit a(a”_l —w) =—1.
Or «a est également une racine de P’ car sa multiplicité est m > 2. Donc P'(a) = 0, dott na™ ! —w =0
) _ w
e ot =—

n
Ainsi en remplacant o~ ! = % dans la premiére équation, on obtient « (% — w) = —1, ce qui se réécrit
ocwl_T" = —1 et ainsi @ = n%% Or |w| =1, donc i = % = w. Donc finalement a = 5.
En réutilisant P(a) = 0, on en déduit que o™ = wa — 1 = Leww — 1 = 2220 = L (9 5p¢),

1 .

c) On a |a| = nﬁlw’ =2 > 1let |a" = |af" = —7 < 1, d’ou || < 1 par croissance sur Ry de

t s tn. 1l est contradictoire d’avoir 4 la fois la] > 1 et |a|] < 1. Par conséquent P n’a pas de racine de
multiplicité m > 2 dans C, donc ne peut admettre que des racines simples dans C (0.75pt).

3. a) C’est un corollaire du théoréme de d’Alembert : P est de degré n donc admet n racines complexes
comptées avec multiplicité (0.5pt).
b) Le coefficient dominant de P est 1, donc a = 1 (0.5pt).
c) Supposons par I'absurde qu’il existe 4, j € {1,...,n}, tels que i # j et oy = oj = . Alors « est racine
de multiplicité m > 2. D’apreés la question [2.f ce n’est pas possible. D’ou la réponse souhaitée (0.75pt).



