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Exercice 1 (Melting pot) (7pt)
Les questions de cet exercice sont indépendantes.
1. Effectuer les représentations graphiques demandées ci-dessous. Pour cette question uniquement, aucune
justification n’est attendue mis à part les éléments de construction ou calculs que vous jugerez utiles à la
compréhension.
a) Représenter dans le plan complexe le cercle trigonométrique et y placer les nombres complexes z1, z2, z3, z4, z5
suivants : z1 = e

2iπ
3 , z2 = −z1, z3 = i5, z4 = e

iπ
6 , z5 = z4.

b) Représenter dans le plan complexe l’ensemble suivant A = {z ∈ C /Re(z) = 2}∪{z ∈ C / Im(z) = −1}.
c) Représenter le graphe de la fonction arctan.
d) Représenter le graphe d’une fonction décroissante et minorée.

2. Soit l’application f : R → R que l’on suppose strictement croissante. Montrer que f est injective.
3. Soit la suite (un)n∈N définie par

∀n ∈ N, un =
nn + cos(n)

3n3 − n+ 1
.

On considère de plus une suite (vn)n∈N satisfaisant pour tout n ∈ N, vn ⩾ u2n.
a) Déterminer un équivalent le plus simple possible de la suite (un)n∈N.
b) En déduire les limites éventuelles de (un)n∈N et (vn)n∈N.

Correction.
7 = (1.5 + 0.5 + 0.5 + 0.5) + 1 + 1.5 + 1.5

1. a) (1.5pt)
b) (0.5pt)
c) (0.5pt)
d) (0.5pt)

2. Soient x, x′ ∈ R tels que f(x) = f(x′). Il s’agit de prouver que x = x′. Par l’absurde supposons que x ̸= x′.
Si x < x′, alors par stricte croissance de f , on a f(x) < f(x′), ce qui est impossible puisque f(x) = f(x′).
Sinon x > x′ et par stricte croissance de f , on obtient cette fois f(x) > f(x′), donnant encore une

contradiction.
Par conséquent x ̸= x′ et donc f est injective (1pt).

3. a) On a nn + cos(n) ∼
n→+∞

nn car nn+cos(n)
nn = 1 + cos(n)

nn −−−−−→
n→+∞

1 puisque (cos(n))n∈N est bornée et
1
nn −−−−−→

n→+∞
0, d’où cos(n)

nn −−−−−→
n→+∞

0 par produit d’une suite bornée et d’une suite de limite nulle.

Puis 3n3 − n+ 1 ∼
n→+∞

3n3 car 3n3−n+1
3n3 = 1− 1

3n2 + 1
3n3 −−−−−→

n→+∞
1.

Ainsi par quotient d’équivalents, on obtient un ∼
n→+∞

nn

3n3 (1.5pt).

b) On a par croissance comparée que 3n3 = o
n→+∞

(nn), donc
(
nn

3n3

)
n∈N∗ tend vers +∞ par passage à

l’inverse d’une suite strictement positive APCR. Or un ∼
n→+∞

nn

3n3 , donc u tend aussi vers +∞.

Comme u tend vers +∞, c’est aussi le cas de u2 par passage au carré (ou produit de deux suites qui
tendent vers +∞). Comme pour tout n ∈ N, vn ⩾ un, par passage à la limite dans l’inégalité, on a
vn −−−−−→

n→+∞
+∞ (1.5pt).
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Exercice 2 (4pt)
Soient q ∈]0, 1[ et M > 0. Soit (ak)k∈N une suite telle que pour tout k ∈ N, ak ∈ [0,M ]. On considère alors

la suite (un)n∈N définie pour tout n ∈ N par un =

n∑
k=0

akq
k.

1. Montrer que la suite (un)n∈N est croissante.

2. a) Soit n ∈ N. Donner la valeur de
n∑

k=0

qk.

b) En déduire que pour tout n ∈ N, un ⩽
M

1− q
.

3. Montrer que la suite (un)n∈N converge. On note ℓ ∈ R sa limite.

4. Montrer que 0 ⩽ ℓ ⩽
M

1− q
.

Correction.
4 = 0.75 + (0.5 + 1) + 0.75 + 1

1. Soit n ∈ N, on a un+1 − un =
∑n+1

k=0 akq
k −

∑n
k=0 akq

k = an+1q
n+1 ⩾ 0 car la suite a est positive et q > 0.

Ainsi u est bien croissante (0.75pt).

2. a) On a
∑n

k=0 q
k = 1−qn+1

1−q (0.5pt).

b) Soit n ∈ N. Puisque q > 0 et pour tout k ∈ N, ak ⩽ M on a donc akq
k ⩽ Mqk et donc

un =
n∑

k=0

akq
k ⩽

n∑
k=0

Mqk = M
n∑

k=0

qk = M
1− qn+1

1− q
⩽ M

1

1− q
=

M

1− q
(1pt).

3. D’après 1., (un)n∈N est croissante et d’après 2.b), (un)n∈N est majorée. Donc par le théorème de la limite
monotone, (un)n∈N est convergente (0.75pt).

4. Soit n ∈ N, on a un =
∑n

k=0 akq
k ⩾ 0 car q > 0 et ak ⩾ 0 pour tout k ∈ N. Ainsi, par passage à la limite

dans l’inégalité, on obtient ℓ ⩾ 0.
D’après 2.b), on a pour tout n ∈ N, un ⩽ M

1−q . Donc par passage à la limite dans cette inégalité, ℓ ⩽ M
1−q .

On a bien l’inégalité souhaitée : 0 ⩽ ℓ ⩽ M
1−q (1pt).

Exercice 3 (8.5pt)
Soit f : x 7→

√
xe−

1
x .

1. Déterminer le domaine de définition naturel de f .
2. a) Quelle est la limite de f en +∞ ?

b) Donner un équivalent le plus simple possible de f en +∞.
3. Montrer que f est dérivable sur R∗

+ en précisant bien les règles utilisées pour la justification et calculer sa
dérivée sur R∗

+. En déduire sa monotonie.
4. Montrer que f est prolongeable par continuité en 0. On notera g le prolongement par continuité obtenu.
On prendra soin de définir précisément g.
5. Montrer que g est continue sur R+.
6. En étudiant le taux d’accroissement de g en 0, montrer que la fonction g est dérivable en 0. Donner g′(0).

Correction.
8.5 = 0.5 + (1 + 0.75) + 2 + 1.5 + 1 + 1.75

1. La fonction inverse est définie sur R∗ et la fonction racine carrée sur R+. Ainsi le domaine de définition
naturel de f est Df = R∗

+ (0.5pt).

2. a) x ∈ R∗
+ 7→ − 1

x tend vers 0 en +∞ et exponentielle vers 1 en 0, donc par composée de limites,
x ∈ R∗

+ 7→ e−
1
x tend vers 1 en +∞. Puis x ∈ R∗

+ 7→
√
x tend vers +∞ en +∞, donc par produit de limites,

lim
x→+∞

f(x) = +∞ (1pt).

b) On a f(x) ∼
x→+∞

√
x, car pour tout x > 0, f(x)√

x
= e−

1
x −→

x→+∞
1 (0.75pt).
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3. La fonction x 7→ − 1
x est dérivable sur R∗

+ et exponentielle est dérivable sur R, donc par composée de
fonctions dérivables, on a x 7→ e−

1
x dérivable sur R∗

+.
Ensuite la fonction racine carrée est dérivable sur R∗

+, donc par produit de fonctions dérivables, f est
dérivable sur R∗

+ (1pt).
Soit x > 0, on a

f ′(x) = e−
1
x

(
1

2
√
x
+

1

x
3
2

)
.

Puisque pour tout x > 0, on a f ′(x) > 0, la fonction f est strictement croissante sur R∗
+ (1pt).

4. La limite en 0 de x ∈ R∗
+ 7→ − 1

x est −∞ et la limite en −∞ de exponentielle est 0, donc par composée de
limites, x ∈ R∗

+ 7→ e−
1
x a pour limite 0 en 0. Comme x ∈ R∗

+ 7→
√
x a pour limite 0 en 0, on déduit donc

par produit de limites que lim
x→0

f(x) = 0 (1pt).

Alternativement, on peut remarquer que la fonction f étant strictement croissante sur R∗
+

et minorée par 0, alors par le théorème de la limite monotone, f admet une limite finie en
0. Ce raisonnement ne permet cependant pas d’identifier la valeur de la limite.

Ainsi la fonction f est prolongeable par continuité en 0. Son prolongement par continuité est alors par
définition

g : x 7→

{
f(x), si x > 0,

0, si x = 0.

0.5pt pour cette dernière partie sur la définition du prolongement par continuité.

5. Par définition, en tant que prolongement par continuité en 0, g est continue en 0. La fonction f est continue
sur R∗

+ car dérivable sur R∗
+. Or comme pour tout x > 0, g(x) = f(x), g est donc également continue sur

R∗
+. Finalement g est continue sur R+ (1pt).

6. Le taux d’accroissement de g en 0 vaut pour tout x > 0,

τg,0(x) =
g(x)− g(0)

x− 0
=

f(x)

x
=

e−
1
x

√
x
. (0.75pt)

Ainsi, par croissances comparées (la limite nulle du terme en exponentielle l’emporte sur la limite valant
+∞ du terme en 1√

x
)

lim
x→0

τg,0(x) = 0. (0.5pt)

Cette limite étant finie, g est dérivable en 0, et on a g′(0) = 0 (0.5pt).
Jusqu’à +1pt bonus si une justification détaillée de la limite de τg,0 en 0 est fournie. Cf les commentaires
qui suivent.

La référence à la croissance comparée dans la justification de la limite de τg,0 en 0 est un
peu rapide car cette limite n’est pas référencée dans le cours. Cependant on peut se ramener
à une croissance comparée référencée après quelques manipulation détaillées maintenant.

La fonction h : t ∈ R∗
+ 7→

√
te−t admet pour limite 0 en +∞ par croissances comparées.

Comme la fonction x ∈ R∗
+ 7→ 1

x tend vers +∞ en 0, par composée de limites, x ∈ R∗
+ 7→

h

(
1

x

)
︸ ︷︷ ︸
= e

− 1
x√
x

tend vers 0 en 0.

Exercice 4 (11.5pt)
On considère la suite (un)n∈N définie par {

u0 = 0,

un+1 =
√
12 + un.

1. Calculer u1 et u2.
2. Montrer que pour tout n ∈ N, 0 ⩽ un ⩽ 4.
3. On considère la fonction

f : [0, 4] −→ R
x 7−→

√
12 + x.
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a) Justifier que f est dérivable sur [0, 4].
b) Étudier les variations de f sur [0, 4].
c) En déduire, par récurrence, que la suite (un)n∈N est croissante.

4. Montrer que pour tout n ∈ N
|un+1 − 4| ⩽ 1

4
|un − 4|.

5. En déduire que, pour tout n ∈ N
|un − 4| ⩽ 1

4n−1
.

6. Montrer, uniquement à l’aide de la définition de la convergence d’une suite, que la suite
(

1
4n−1

)
n∈N converge

vers 0.
7. En déduire que la suite (un)n∈N converge et déterminer sa limite.
8. Uniquement grâce aux résultats des questions 2. et 3., prouver de nouveau la convergence de (un)n∈N et
déterminer sa limite.

Correction.
11.5 = 0.5 + 1 + (0.75 + 0.5 + 1) + 1 + 1 + 2.5 + 0.75 + 2.5

1. On a u1 =
√
12, u2 =

√
12 +

√
12 (0.5pt).

2. Initialisation. On a u0 = 0 ∈ [0, 4].
Hérédité. Soit n ∈ N. Supposons que 0 ⩽ un ⩽ 4, alors 12 ⩽ 12 + un ⩽ 16, donc par croissance de la

fonction racine carré sur R+, 0 ⩽
√
12 ⩽ un+1 ⩽ 4. Ceci termine la récurrence (1pt).

3. a) x 7→ 12 + x est dérivable sur [0, 4] avec valeurs dans [12, 16] donc dans R∗
+, et x 7→

√
x est dérivable

sur R∗
+, donc f est dérivable sur [0, 4] en tant que composée de fonctions dérivables (0.75pt).

b) On a pour tout x ∈ [0, 4], f ′(x) = 1
2
√
12+x

> 0, donc f est strictement croissante sur [0, 4] (0.5pt).

c) Montrons par récurrence que pour tout n ∈ N, on a un ⩽ un+1.
Initialisation. On a u1 =

√
12 ⩾ u0 = 0.

Hérédité. Soit n ∈ N. On suppose que un ⩽ un+1. La suite u est à valeurs dans [0, 4] et la fonction f est
strictement croissante sur [0, 4], donc un+1 = f(un) ⩽ f(un+1) = un+2. On a bien prouvé la propriété au
rang n+ 1, donc la récurrence est terminée (1pt).

4. Soit n ∈ N, on a |un+1−4| = |
√
12 + un−4| = |un−4|

|
√
12+un+4| , après multiplication par l’expression conjuguée.

Comme |
√
12 + un + 4| =

√
12 + un + 4 ⩾ 4, on obtient |un+1 − 4| ⩽ 1

4 |un − 4| (1pt).
5. Montrons la propriété par récurrence.

Initialisation. On a |u0 − 4| = 4 ⩽ 1
4−1 = 4.

Hérédité. Soit n ∈ N. Supposons que |un − 4| ⩽ 1
4n−1 , alors |un+1 − 4| ⩽ 1

4 |un − 4| ⩽ 1
4n . Ceci termine la

récurrence (1pt).

6. Soit ε > 0. Posons N = max
(
E
(
1− ln(ε)

ln(4)

)
+ 1, 0

)
∈ N. Soit n ⩾ N . Alors n ⩾ E

(
1− ln(ε)

ln(4)

)
+1 > 1− ln(ε)

ln(4) ,

donc en particulier n ⩾ 1− ln(ε)
ln(4) , soit encore (n− 1) ln(4) ⩾ − ln(ε), d’où par passage à l’exponentielle qui

est croissante 4n−1 ⩾ 1
ε , i.e. 1

4n−1 ⩽ ε. La suite
(

1
4n−1

)
n∈N converge bien vers 0 (2.5pt).

7. On a pour tout n ∈ N, 0 ⩽ |un − 4| ⩽ 1
4n−1 et

(
1

4n−1

)
n∈N converge vers 0, donc par le théorème d’encadre-

ment |un − 4| −−−−−→
n→+∞

0, i.e. u converge vers 4 (0.75pt).

8. 2.5pt pour le tout. Environ moitié/moitié pour chacune des parties du raisonnement.

La suite (un)n∈N est croissante et majorée, donc convergente par le théorème de la limite monotone. On
note ℓ sa limite. D’après la question 2., comme pour tout n ∈ N, 0 ⩽ un ⩽ 4, par passage à la limite dans
les inégalités, on obtient ℓ ∈ [0, 4].

La fonction f est continue sur [0, 4] car dérivable sur [0, 4], donc continue en ℓ, ainsi nécessairement ℓ = f(ℓ)
(corollaire de la caractérisation séquentielle de la continuité). Ainsi ℓ satisfait l’équation ℓ2 = ℓ + 12, dont
les deux solutions sont −3 et 4. Comme ℓ ⩾ 0, on a déduit que ℓ = 4.

Exercice 5 (6.5pt)
Soient n ∈ N∗, w ∈ C tel que |w| = 1 et P = Xn − wX + 1 ∈ C[X].
1. Déterminer le polynôme dérivé de P .
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2. On veut montrer que P ne peut admettre que des racines simples dans C. On suppose par l’absurde que
P admet une racine de multiplicité m ∈ N∗ avec m ⩾ 2 et que l’on note α ∈ C.

a) Justifier que n ⩾ 2.

b) Montrer que α =
n

n− 1
w puis que αn =

1

n− 1
.

c) Conclure.

3. a) Justifier que P = a(X − α1)(X − α2) · · · (X − αn) où a, α1, . . . , αn sont des nombres complexes.
b) Préciser la valeur de a.
c) Montrer que pour tout i ∈ {1, . . . , n}, pour tout j ∈ {1, . . . , n}, i ̸= j ⇒ αi ̸= αj .

Correction.
6.5 = 0.5 + (1 + 2.5 + 0.75) + (0.5 + 0.5 + 0.75)

1. On a P ′ = nXn−1 − w (0.5pt).
2. a) Comme α est racine de multiplicité m de P , il existe Q ∈ C[X] tel que P = (X − α)mQ, donc
deg(P ) = deg((X − α)m) + deg(Q) et deg(Q) ⩾ 0 car Q ̸= 0, donc n = deg(P ) ⩾ m ⩾ 2 (1pt).
b) Comme α est une racine de P , on a P (α) = 0, donc αn−wα+1 = 0, ce qui se réécrit α

(
αn−1−w

)
= −1.

Or α est également une racine de P ′ car sa multiplicité est m ⩾ 2. Donc P ′(α) = 0, d’où nαn−1 − w = 0

i.e. αn−1 =
w

n
.

Ainsi en remplaçant αn−1 = w
n dans la première équation, on obtient α

(
w
n − w

)
= −1, ce qui se réécrit

αw 1−n
n = −1 et ainsi α = n

n−1
1
w . Or |w| = 1, donc 1

w = w̄
|w|2 = w̄. Donc finalement α = n

n−1 w̄.

En réutilisant P (α) = 0, on en déduit que αn = wα− 1 = n
n−1 w̄w − 1 = n−n+1

n−1 = 1
n−1 (2.5pt).

c) On a |α| =
∣∣∣∣ n
n−1w

∣∣∣∣ = n
n−1 > 1 et

∣∣αn
∣∣ = |α|n =

1

n− 1
⩽ 1, d’où |α| ⩽ 1 par croissance sur R+ de

t 7→ t
1
n . Il est contradictoire d’avoir à la fois |α| > 1 et |α| ⩽ 1. Par conséquent P n’a pas de racine de

multiplicité m ⩾ 2 dans C, donc ne peut admettre que des racines simples dans C (0.75pt).
3. a) C’est un corollaire du théorème de d’Alembert : P est de degré n donc admet n racines complexes

comptées avec multiplicité (0.5pt).
b) Le coefficient dominant de P est 1, donc a = 1 (0.5pt).
c) Supposons par l’absurde qu’il existe i, j ∈ {1, . . . , n}, tels que i ̸= j et αi = αj = α. Alors α est racine
de multiplicité m ⩾ 2. D’après la question 2., ce n’est pas possible. D’où la réponse souhaitée (0.75pt).


