

# Licence 1<sup>ère</sup> année, 2024-2025, MATHÉMATIQUES ET CALCUL 1 (MC1)

## Contrôle continu, jeudi 14 novembre 2024

Durée 1h30 ou 2h pour 1/3 temps.

Aucun document n'est autorisé. Les calculatrices et les téléphones, même à titre d'horloge, sont également interdits. Les exercices sont indépendants. Toutes les réponses doivent être soigneusement justifiées.

 $Total\ sujet: 31 = 9 + 5.5 + 5.5 + 3 + 8$ 

## Exercice 1 (9pt)

L'objectif de cet exercice est de factoriser le polynôme  $P = X^6 + (2+i)X^4 + (1+2i)X^2 + i$  dans  $\mathbb{C}$ .

- 1. On pose  $T = X^4 + 2X^2 + 1$ .
  - a) Donner, en justifiant, le nombre de racines complexes de T, comptées avec multiplicité.
  - b) Démontrer que si  $z \in \mathbb{C}$  est racine de T alors  $\bar{z}$  est aussi racine de T.

On admettra dans la suite que z et  $\overline{z}$  ont alors la même multiplicité.

- c) Calculer T(i), T'(i) et T''(i).
- d) Déduire des questions précédentes toutes les racines de T ainsi que leur multiplicité.
- 2. Déterminer un polynôme  $Q \in \mathbb{C}[X]$  de degré 2 tel que P = TQ.
- 3. a) Calculer les racines carrées complexes de -i.
  - b) En déduire les racines complexes du polynôme Q.
- 4. Déduire des questions précédentes une factorisation de P dans  $\mathbb{C}$ .

#### Correction.

$$9 = (0.5 + 1.5 + 1 + 1) + 2 + (1.5 + 0.5 + 1)$$

- 1. a) Comme T est de degré 4, alors T a 4 racines (complexes) comptées avec multiplicité (0.5pt).
  - b) Soit  $z \in \mathbb{C}$  tel que z est racine de T, i.e. T(z) = 0. On a donc  $\overline{T(z)} = 0$ , or le conjugué d'une somme est la somme des conjugués, et le conjugué d'un produit est le produit des conjugués, d'où  $\overline{T(z)} = \overline{z}^4 + 2\overline{z}^2 + 1 = T(\overline{z})$ . Par conséquent, on a bien que  $T(\overline{z}) = 0$ , i.e.  $\overline{z}$  est racine de T(1.5pt).

Notez que l'étape clé dans cette démonstration est l'établissement de la relation  $\overline{T(z)} = T(\overline{z})$  qui a pu être obtenue ici car les coefficients de T sont réels. Ainsi le résultat démontré dans cette question se généralise à tout polynôme de  $\mathbb{R}[X]$ : pour tout  $P \in \mathbb{R}[X]$ , si z est racine de P alors  $\overline{z}$  l'est également. A rédiger en exercice!

La propriété admise dans l'énoncé (concernant le fait que z et  $\bar{z}$  sont racines avec même multiplicité) se démontre également de manière générale pour tout polynôme à coefficients réels. Pour cela il faut utiliser la caractérisation de la multiplicité grâce à l'étude des polynômes dérivés  $P^{(k)}$ . A faire en exercice également!

- c) On a  $T' = 4X^3 + 4X$  et  $T'' = 12X^2 + 4$ , d'où  $T(i) = i^4 + 2i^2 + 1 = 1 2 + 1 = 0$ , puis on obtient de même T'(i) = 0, par contre  $T''(i) = 12i^2 + 4 = -8 \neq 0$  (1pt).
- d) D'après la question 1.c), i est racine de multiplicité 2 de T. De plus, grâce à la question 1.b), on déduit que  $\bar{i} = -i$  est racine de multiplicité 2 de T. D'après la question 1.a), on a ainsi bien trouvé toutes les racines (1pt).
- 2. Première méthode : par identification. Soit  $Q=aX^2+bX+c$  un polynôme de degré 2, avec  $a,b,c\in\mathbb{C}$ . On a

$$P = TQ \Leftrightarrow X^{6} + (2+i)X^{4} + (1+2i)X^{2} + i = aX^{6} + bX^{5} + (2a+c)X^{4} + 2bX^{3} + (2c+a)X^{2} + bX + c,$$

$$\Rightarrow \text{ par identification } \begin{cases}
1 = a, \\
0 = b, \\
2 + i = 2a + c, \\
0 = 2b, \\
1 + 2i = 2c + a, \\
0 = b, \\
1 = c
\end{cases} \Leftrightarrow \begin{cases}
a = 1, \\
b = 0, \\
c = i
\end{cases}$$

Ainsi on trouve  $Q = X^2 + i$  (2pt).

<u>Deuxième méthode</u>: par division euclidienne. On applique l'algorithme de la division euclidenne. On a d'abord  $P = X^2T + (iX^4 + 2iX^2 + i)$ , puis  $iX^4 + 2iX^2 + i = iT$ , donc finalement  $P = X^2T + iT = (X^2 + i)T$  (le reste de la division euclidienne de P par T est le polynôme nul). On trouve bien de nouveau que  $Q = X^2 + i$ .

- 3. a) Le nombre complexe -i admet deux racines complexes, opposées l'une de l'autre. Il suffit donc d'en trouver une. On a  $-i = e^{i\frac{3\pi}{2}}$ , donc une racine de -i est  $z_1 = e^{i\frac{3\pi}{4}} = \cos(\pi \frac{\pi}{4}) + i\sin(\pi \frac{\pi}{4}) = -\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}) = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ . L'autre racine est donc  $z_2 = -z_1 = \frac{\sqrt{2}}{2} i\frac{\sqrt{2}}{2}$ .
  - 1.5pt pour l'ensemble. Compter tous les points si la copie s'arrête à une expression exponentielle.
  - b) Par définition de  $z_1$  et  $z_2$ , on a  $z_1^2 = z_2^2 = -i$ , donc  $Q(z_1) = 0$  et  $Q(z_2) = 0$ . Comme  $z_1 \neq z_2$  et Q est de degré 2, on déduit que les racines du polynôme Q sont  $z_1$  et  $z_2$  (0.5pt).
- 4. On a montré que P = TQ, avec  $T = (X i)^2 (X + i)^2$  car T est unitaire (coefficient dominant valant 1) et i, -i sont les racines de multiplicité 2 de T, et  $Q = (X z_1)(X z_2)$  car Q est unitaire et  $z_1$  et  $z_2$  sont les racines (de multiplicité 1) de Q, d'où

$$P = (X - i)^{2}(X + i)^{2}(X - z_{1})(X - z_{2}). (1pt)$$

## Exercice 2 (5.5pt)

On définit deux suites  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  par récurrence telles que  $u_0=1$  et  $v_0=12$  et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{3}(u_n + 2v_n) \quad \text{et} \quad v_{n+1} = \frac{1}{4}(u_n + 3v_n).$$

- 1. Montrer que la suite  $(w_n)_{n\in\mathbb{N}}$ , définie pour tout  $n\in\mathbb{N}$  par  $w_n=v_n-u_n$ , est géométrique en précisant la raison. En déduire la limite de  $(w_n)_{n\in\mathbb{N}}$ .
- 2. Montrer que  $(u_n)_{n\in\mathbb{N}}$  est croissante,  $(v_n)_{n\in\mathbb{N}}$  est décroissante. En déduire qu'elles convergent vers la même limite, que l'on notera  $\ell\in\mathbb{R}$ .
- 3. On définit la suite  $(t_n)_{n\in\mathbb{N}}$  telle que pour tout  $n\in\mathbb{N}$ ,  $t_n=3u_n+8v_n$ . Montrer par récurrence que pour tout  $n\in\mathbb{N}$ ,  $t_n=99$ . En déduire la valeur de  $\ell$ .

#### Correction.

$$5.5 = 1 + 2 + 2.5$$

- 1. Soit  $n \in \mathbb{N}$ , on a  $w_{n+1} = v_{n+1} u_{n+1} = \frac{1}{4}(u_n + 3v_n) \frac{1}{3}(u_n + 2v_n) = -\frac{1}{12}u_n + \frac{1}{12}v_n = \frac{1}{12}w_n$ . Ainsi w est bien géométrique de raison  $\frac{1}{12}$ . Comme la raison de w est dans ] 1, 1[, w converge vers 0 (1pt).
- 2. Soit  $n \in \mathbb{N}$ , on a  $u_{n+1} u_n = \frac{2}{3}w_n$  et  $v_{n+1} v_n = -\frac{1}{4}w_n$ . Or d'après la précédente question, on a pour tout  $n \in \mathbb{N}$ ,  $w_n = \left(\frac{1}{12}\right)^n w_0$  et  $w_0 = v_0 u_0 = 11 > 0$ . Donc pour tout  $n \in \mathbb{N}$ ,  $w_n > 0$ . Par conséquent u est strictement croissante et v est strictement décroissante.

On a montré que u est croissante, v et décroissante et v-u converge vers 0, ainsi u et v sont des suites adjacentes et convergent donc vers la même limite que l'on note  $\ell \in \mathbb{R}$ .

1.5pt pour l'étude de la monotonie.

0.5pt pour la conclusion, le mot "suite adjacente" doit apparaître.

3. On montre la propriété " $t_n = 99$ " par récurrence sur  $n \in \mathbb{N}$ .

Initialisation (n = 0). On a  $t_0 = 3u_0 + 8v_0 = 99$ .

<u>Hérédité</u>. Soit  $n \in \mathbb{N}$ , supposons que  $t_n = 99$ . Alors  $t_{n+1} = 3u_{n+1} + 8v_{n+1} = (u_n + 2v_n) + 2(u_n + 3v_n) = 3u_n + 8v_n = t_n$ . Or par hypothèse de récurrence,  $t_n = 99$ , donc  $t_{n+1} = 99$ .

Ceci termine la récurrence, et on a donc bien montré la propriété souhaitée.

Comme u et v convergent vers la même limite  $\ell$ , par opération sur les suites convergentes, on obtient que  $t_n \underset{n \to +\infty}{\longrightarrow} 3\ell + 8\ell = 11\ell$ . Or on a vu que  $(t_n)_{n \in \mathbb{N}}$  est une suite constante valant 99, donc converge vers 99. Par unicité de la limite, on obtient finalement  $11\ell = 99$ , soit  $\ell = 9$ .

1.5pt pour la récurrence.

1pt pour la fin du raisonnement.

#### Exercice 3 (5.5pt)

Parmi les énoncés suivants, prouver ceux qui sont vrais et donner un contre-exemple pour les autres.

- 1. Si  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  sont bornées alors  $(u_n+v_n)_{n\in\mathbb{N}}$  est aussi bornée.
- 2. Toute suite croissante tend vers  $+\infty$ .

- 3. Si  $(u_n)_{n\in\mathbb{N}}$  et  $(v_n)_{n\in\mathbb{N}}$  sont deux suites stationnaires, alors la suite produit  $(u_nv_n)_{n\in\mathbb{N}}$  est stationnaire. Indication : on rappelle qu'une suite stationnaire est une suite constante à partir d'un certain rang.
- 4. Si une suite tend vers  $-\infty$ , alors elle est décroissante.

#### Correction.

$$5.5 = 1.5 + 1 + 1.5 + 1.5$$

1. Vrai. En effet, comme u est bornée, il existe  $M \in \mathbb{R}_+$  tel que pour tout  $n \in \mathbb{N}$ ,  $|u_n| \leq M$ . De même, comme v est bornée, il existe  $M' \in \mathbb{R}_+$  tel que pour tout  $n \in \mathbb{N}$ ,  $|v_n| \leq M'$  (0.75pt).

Soit  $n \in \mathbb{N}$ , on a alors par l'inégalité triangulaire  $|u_n + v_n| \leq |u_n| + |v_n|$ , et donc  $|u_n + v_n| \leq M + M'$ . Ainsi la suite u + v est bien bornée (0.75pt).

- 2. Faux. Contre-exemple : la suite  $\left(\frac{-1}{n}\right)_{n\in\mathbb{N}}$  est croissante mais converge vers 0, donc ne tend pas vers  $+\infty$  (1pt).
- 3. Vrai. Comme u est stationnaire, il existe  $N \in \mathbb{N}$  tel que pour tout  $n \geqslant N$ ,  $u_n = u_N$ . De même, comme v est stationnaire, il existe  $N' \in \mathbb{N}$  tel que pour tout  $n \geqslant N'$ ,  $v_n = v_N$ . Donc pour tout  $n \geqslant n_0 = \max(N, N')$ , on a  $u_n v_n = u_{n_0} v_{n_0}$ . Donc la suite uv est constante à partir du rang  $n_0$  et vaut  $u_{n_0} v_{n_0}$ , i.e. uv est stationnaire (1.5pt).
- 4. Faux. Contre exemple : considérons la suite  $u = (-|n-1|)_{n \in \mathbb{N}}$ . Alors pour tout  $n \ge 1$ , on a  $u_n = -n+1$ , donc la suite u tend vers  $-\infty$ . Or  $u_0 = -1$  et  $u_1 = 0$ , i.e.  $u_0 < u_1$ , donc la suite u n'est pas décroissante puisque ne satisfait pas pour tout  $n \in \mathbb{N}$ ,  $u_{n+1} \le u_n$  (1.5pt).

Autre contre-exemple : considérons la suite  $u=(-n+(-1)^n)_{n\in\mathbb{N}}$ . On a pour tout  $n\in\mathbb{N}, u_n\leqslant -n+1$ , donc par passage à la limite dans l'inégalité, comme -n+1  $\underset{n\to+\infty}{\longrightarrow} -\infty$ , u tend vers  $-\infty$ . Soit  $k\in\mathbb{N}$ , alors  $u_{2k}=-2k+1$  et  $u_{2k+1}=-2k-2$ , donc  $u_{2k+2}-u_{2k+1}=u_{2(k+1)}-u_{2k+1}=-2(k+1)+1-(-2k-2)=-1+2=1>0$ . Donc u n'est pas décroissante car sinon on aurait  $u_{2k+2}-u_{2k+1}\leqslant 0$ .

## Exercice 4 (3pt)

Donner les limites des suites dont les termes généraux sont énumérés ci-dessous. On pensera à préciser au préalable leur domaine de définition.

1. 
$$u_n = \sum_{k=0}^n \frac{1}{2^k}$$
.

2. 
$$v_n = -\frac{\sqrt{n}}{2} + \sin(\ln(n))$$
.

#### Correction.

$$3 = 1.5 + 1.5$$

1. La quantité  $\sum_{k=0}^{n} \frac{1}{2^k}$  est bien définie pour tout  $n \in \mathbb{N}$  (0.25pt). Soit  $n \in \mathbb{N}$ , on a

$$\sum_{k=0}^{n} \frac{1}{2^k} = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}},$$

par la formule d'une somme géométrique de raison différente de 1 (0.5pt). Or  $(\frac{1}{2})^{n+1} \underset{n \to +\infty}{\longrightarrow} 0$ , donc par opération sur les suites convergentes (soustraction, division), on obtient que la suite u converge vers 2 (0.75pt).

2. La quantité  $v_n$  est définie pour tout  $n \in \mathbb{N}^*$  car ln est définie sur  $\mathbb{R}_+^*$  (les autres quantités ne posent pas de soucis) (0.25pt). On sait que pour tout  $x \in \mathbb{R}$ ,  $-1 \le \sin(x) \le 1$ , donc pour tout  $n \in \mathbb{N}^*$ ,  $-1 \le \sin(\ln(n)) \le 1$ , d'où  $v_n \le -\frac{\sqrt{n}}{2} + 1$  (0.5pt). Or  $-\frac{\sqrt{n}}{2} + 1$   $\underset{n \to +\infty}{\longrightarrow} -\infty$ , donc par passage à la limite dans une inégalité, on déduit que la suite  $(v_n)_{n \in \mathbb{N}^*}$  tend vers  $-\infty$  (0.75pt).

#### Exercice 5 (8pt)

1. Soit  $z = x + iy \in \mathbb{C}$ , avec  $x, y \in \mathbb{R}$ , tel que  $z \neq i$ . On définit de plus  $z' \in \mathbb{C}$  tel que

$$z' = \frac{z-1}{z-i}.$$

- a) Que pouvez-vous dire de x et y sachant que  $z \neq i$ ? Pourquoi l'hypothèse  $z \neq i$  est-elle nécessaire?
- b) Écrire z' sous forme algébrique. Vous exprimerez la partie réelle et imaginaire de z' en fonction de x et y.
- c) En déduire que z' est réel si et seulement si x + y = 1.

2. On considère l'ensemble de nombres complexes suivant

$$D = \left\{ z \in \mathbb{C} / z \neq i, \frac{z-1}{z-i} \in \mathbb{R} \right\}.$$

- a) Montrer que 1 et -1 + 2i appartiennent à D.
- b) A l'aide de la question 1.c), montrer que l'ensemble D se réécrit

$$D = \{ x + i(1 - x) / x \in \mathbb{R}^* \}.$$

- c) En déduire une interprétation géométrique de l'ensemble des points d'affixe  $z \in D$ .
- d) Montrer que  $z_0 = \frac{1}{1-\sqrt{3}} i\frac{\sqrt{3}}{1-\sqrt{3}}$  appartient à D. Puis mettre  $z_0$  sous forme exponentielle.

#### Correction

$$8 = (0.5 + 3 + 0.5) + (0.5 + 1 + 1 + 1.5)$$

- 1. a) La condition  $z \neq i$  est vraie si et seulement si  $x \neq 0$  ou  $y \neq 1$ . L'hypothèse  $z \neq i$  est nécessaire afin que z' soit bien défini, car sinon on divise par 0 (0.5pt).
  - b) En multipliant z' au numérateur et dénominateur par le conjugué de z-i, on obtient

$$z' = \frac{z-1}{z-i} = \frac{(z-1)(\bar{z}+i)}{(z-i)(\bar{z}+i)} = \frac{|z|^2 + iz - \bar{z} - i}{|z|^2 - i\bar{z} + iz + 1},$$

or  $iz - i\bar{z} = iz + i\bar{z} = 2\Re(iz) = -2y$  et  $iz - \bar{z} = -x - y + i(x + y)$ , d'où

$$z' = \frac{x^2 + y^2 - x - y + i(x+y) - i}{x^2 + y^2 - 2y + 1} = \frac{x^2 + y^2 - x - y}{x^2 + y^2 - 2y + 1} + i\frac{x+y-1}{x^2 + y^2 - 2y + 1}.$$

Et on a

$$\mathfrak{Re}(z') = \frac{x^2 + y^2 - x - y}{x^2 + y^2 - 2y + 1} \quad \text{et} \quad \mathfrak{Im}(z') = \frac{x + y - 1}{x^2 + y^2 - 2y + 1}.$$

3pt pour l'ensemble des calculs dont

- -0.5pt pour penser à utiliser la technique "multiplication par quantité conjuguée",
- -0.5pt pour une identification cohérente d'une partie réelle et imaginaire (même si erreurs de calcul).
- c) Ainsi z' est réel si et seulement si  $\mathfrak{Im}(z') = 0$  i.e. x + y = 1 (0.5pt).
- 2. a) Directement par le calcul. On a  $1 \neq i$  et  $\frac{1-1}{1-i} = 0 \in \mathbb{R}$ , d'où  $1 \in D$ . De même  $-1 + 2i \neq i$  et  $\frac{-1+2i-1}{-1+2i-i} = 2 \in \mathbb{R}$ , d'où  $-1 + 2i \in D$  (0.5pt).

En utilisant ce qui précède. Par définition de D, on a  $z=x+iy\in\mathbb{C}\setminus\{i\}$ , avec  $x,y\in\mathbb{R}$ , appartient à D si et seulement si  $\frac{z-1}{z-i}$  est réel. Or d'après la question 1.c), c'est vrai si et seulement si x+y=1. On a bien que 1 et -1+2i satisfont cette condition, donc appartiennent bien à D.

b) Soit  $z = x + iy \neq i$ , avec  $x, y \in \mathbb{R}$ . On a

$$z \in D \quad \Leftrightarrow \quad \frac{z-1}{z-i} \in \mathbb{R} \quad \Leftrightarrow \quad x+y=1 \quad \Leftrightarrow \quad y=1-x \quad \Leftrightarrow \quad z=x+i(1-x).$$

De plus pour tout  $x \in \mathbb{R}$ , on a  $z = x + i(1 - x) \neq i$  si et seulement si  $x \neq 0$ . On a donc bien

$$D = \{x + i(1 - x) / x \in \mathbb{R}^*\}.$$

1pt pour ce jeu de réécriture à partir de ce qui précède

- c) L'ensemble des points d'affixe appartenant à D est donc une droite d'équation y = 1 x, à laquelle on enlève le point d'affixe i (1pt).
- d) Le nombre complexe  $z_0$  se réécrit  $z_0 = x + i(1 x)$  avec  $x = \frac{1}{1 \sqrt{3}} \neq 0$ . Donc  $z_0 \in D$  (0.5pt). On a de plus

$$z_0 = \frac{2}{\sqrt{3} - 1} \left( -\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) = \frac{2}{\sqrt{3} - 1} e^{i\frac{2\pi}{3}}.$$

Ainsi comme  $\frac{2}{\sqrt{3}-1} > 0$ ,  $|z_0| = \frac{2}{\sqrt{3}-1}$  et  $\arg(z_0) = \frac{2\pi}{3}$  (1pt).