Nom:

Prénom:

Prenom:
No étudiant:

Université Paris Cité UFR Mathématiques et Informatique 2023-2024

M1 MMA - Optimisation sous Contraintes - Interro $n^{\circ}2$

Durée 35mn. Aucun document n'est autorisé.

Exercice 1 (16pt)

Soit $n \in \mathbb{N}^*$. On note pour tout $k \in \{1, \dots, n\}$, e_k le k-ème vecteur de la base canonique de \mathbb{R}^n . Dans la suite on considère les ensembles

$$S = \{x \in \mathbb{R}^n \, / \, \left\|x\right\|_1 = 1\} \quad \text{et} \quad C = \{x \in \mathbb{R}^n \, / \, \left\|x\right\|_1 \leqslant 1\}.$$

On fixe $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{R}^n$ avec $\alpha \neq 0$ et on considère la fonction $f : x \in \mathbb{R}^n \mapsto \langle \alpha, x \rangle$. On va s'intéresser aux problèmes d'optimisation suivant

$$\inf_{x \in S} f(x),$$

et

$$\inf_{x \in C} f(x).$$

- 1. a) Montrer que les problèmes (\mathcal{P}_1) et (\mathcal{P}_2) sont bien posés.
 - b) Écrire les conditions d'optimalité d'ordre 1 pour chacun des problèmes (\mathcal{P}_1) et (\mathcal{P}_2) . A-t-on, a priori, dans chaque situation une condition nécessaire et suffisante?
 - c) Soit $x_0 \in C$ un minimum global de f sur C. Montrer que $x_0 \in \partial C = S$.
- 2. Dans cette question uniquement, on suppose n=2.
 - a) Représenter, sans justifications, sur des dessins séparés $T_S(e_1)$, $T_S(e_1)^*$, $T_C(e_1)$ et $T_C(e_1)^*$.
 - b) Grâce à vos dessins, et aux conditions d'optimalités d'ordre 1 des différents problèmes, montrer que si e_1 est un minimum local de f sur S, alors c'est aussi un minimum global de f sur C.
 - c) On suppose que $\alpha = (-1, 2)$. Identifier graphiquement parmi les éléments $e_1, -e_1, e_2, -e_2$, en vous aidant des conditions d'optimalité d'ordre 1, lequel est un minimum global de f sur C.
- 3. Nous allons montrer que f admet nécessairement un minimum global parmi les points extrêmes de C, c'est-à-dire parmi les éléments $\{e_1, -e_1, e_2, -e_2, \dots, e_n, -e_n\}$.

On considère $k_0 \in \operatorname{argmax}_{1 \le k \le n} |\alpha_k|$.

a) Montrer que $|\alpha_{k_0}| > 0$.

On définit alors $sign(\alpha_{k_0}) = 1$ si $\alpha_{k_0} > 0$ et $sign(\alpha_{k_0}) = -1$ si $\alpha_{k_0} < 0$.

- b) Montrer que $-\text{sign}(\alpha_{k_0})e_{k_0}$ satisfait les conditions d'optimalité d'ordre 1 de (\mathcal{P}_2) .
- c) Conclure.

Correction.

$$(1.5 + 3 + 1.5) + (3.5 + 1.5 + 1.5) + (0.5 + 2.5 + 0.5)$$

1. a) Les ensembles S et C sont compacts non vides et f est continue sur \mathbb{R}^n en tant que fonction linéaire, donc f est bornée et atteint ses bornes. Par conséquent f admet un minimum global sur S et C et par conséquent les problèmes (\mathcal{P}_1) et (\mathcal{P}_2) sont bien posés (1.5pt).

Remarque post-correction : f n'est pas coercive! Toute application linéaire (ou même affine) de \mathbb{R}^n dans \mathbb{R} n'est jamais coercive. En effet une telle fonction s'écrit $g: x \in \mathbb{R}^n \mapsto \langle a, x \rangle + b$ avec $a \in \mathbb{R}^n$ et $b \in \mathbb{R}$ (b = 0 si g est linéaire). Alors en prenant $x \neq 0$ tel que $x \perp a$, on a pour tout $t \in \mathbb{R}$, $g(tx) = t \langle a, x \rangle + b = b$. Ainsi $\lim_{|t| \to +\infty} g(tx) = b \neq +\infty$.

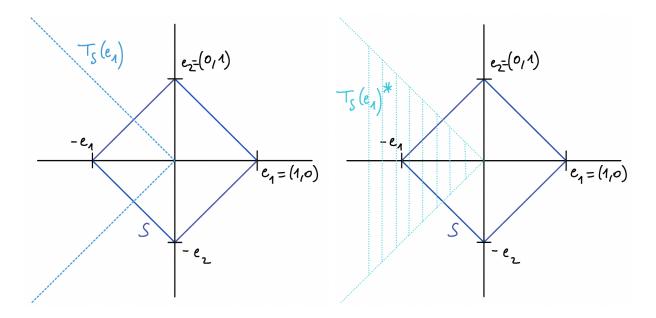


FIGURE 1. Représentations de S, $T_S(e_1)$ et $T_S(e_1)^*$ (2pt).

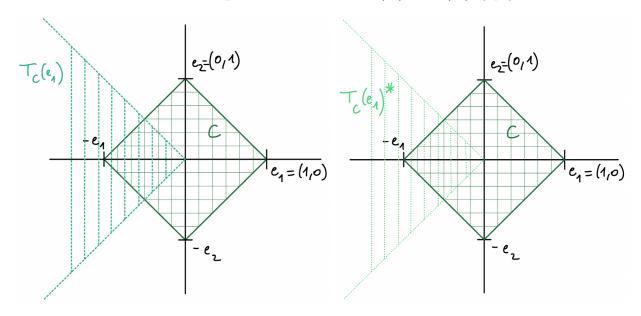


FIGURE 2. Représentations de C, $T_C(e_1)$ et $T_C(e_1)^*$ (1.5pt).

b) La fonction f est différentiable sur \mathbb{R}^n et pour tout $x \in \mathbb{R}^n$, $\nabla f(x) = \alpha$ (0.5pt). Soit x_0 un minimum local de f sur S, respectivement sur C, alors on a $\alpha \in T_S(x_0)^*$, respectivement $\alpha \in T_C(x_0)^*$ (1pt).

La fonction f étant convexe car linéaire et l'ensemble C étant également convexe, les conditions nécessaires d'optimalité d'ordre 1 dans le cas de x_0 minimum local sur C pour f (équivalent à minimum global) est également suffisante (1pt).

L'ensemble S n'étant pas convexe, dans le cas d'un minimum local de f sur S, les conditions d'optimalité d'ordre 1 ne sont a priori que nécessaires (0.5pt)

- c) Supposons par l'absurde que $x_0 \notin \partial C = C \setminus \mathring{C}$, alors comme $x_0 \in C$ on a $x_0 \in \mathring{C}$. Dans ce cas les conditions d'optimalité d'ordre 1 indique que $\nabla f(x_0) = 0$ (cf cours du premier semestre ou avec les outils du second semestre : $T_C(x_0) = \mathbb{R}^n$ et donc $T_C(x_0)^* = \{0\}$). Or $\nabla f(x_0) = \alpha \neq 0$. D'où la contradiction (1.5pt).
- 2. a) Voir Figures (1) et (2).
 - b) On remarque que $T_S(e_1)^* = T_C(e_1)^*$. Donc si e_1 est un minimum local de f sur S, alors $\nabla f(e_1) = \alpha \in T_S(e_1)^*$, donc $\nabla f(e_1) = \alpha \in T_C(e_1)^*$ qui est une condition suffisante pour que e_1 soit un minimum global de f sur C (1.5pt).

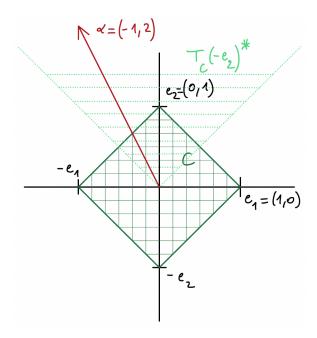


FIGURE 3. Représentation de α et $T_C(-e_2)^*$.

- c) On remarque graphiquement (voir Figure 3) que $\alpha \in T_C(-e_2)^*$ i.e. $\nabla f(-e_2) \in T_C(-e_2)^*$ (puisque pour tout $x \in \mathbb{R}^2$, $\nabla f(x) = \alpha$). Donc $-e_2$ est un minimum global de f sur C (1.5pt).
- 3. a) Si $|\alpha_{k_0}| = 0$ alors $\alpha = 0$, contradiction. Donc $|\alpha_{k_0}| > 0$ (0.5pt).
 - b) Il s'agit de démontrer que pour tout $x \in C$, $\langle \alpha, x (-\operatorname{sign}(\alpha_{k_0})e_{k_0}) \rangle \geqslant 0$ (0.5pt). Soit $x \in C$, alors $x = \sum_{k=1}^{n} x_k e_k$ avec $\sum_{k=1}^{n} |x_k| \leqslant 1$. On a donc

$$\langle \alpha, x - (-\operatorname{sign}(\alpha_{k_0})e_{k_0}) \rangle = \left\langle \alpha, \sum_{k=1}^n x_k e_k + \operatorname{sign}(\alpha_{k_0})e_{k_0} \right\rangle = \sum_{k=1}^n \alpha_k x_k + |\alpha_{k_0}|,$$

$$\geqslant -\sum_{k=1}^n \underbrace{|\alpha_k x_k|}_{|\alpha_k| \leqslant |\alpha_{k_0}|} + |\alpha_{k_0}| \geqslant |\alpha_{k_0}| \underbrace{(-\sum_{k=1}^n |x_k| + 1)}_{\geqslant 0} \geqslant 0. \underbrace{(2pt)}_{\geqslant 0}$$

c) On a vu que les conditions nécessaires d'optimalité d'ordre 1 pour (\mathcal{P}_2) sont en fait suffisantes, d'où $-\operatorname{sign}(\alpha_{k_0})e_{k_0}$ est un minimum global de f sur C (donc également sur S) (0.5pt).