

Master 1^{ère} année, MMA, 2024-2025 Optimisation sous contraintes

Examen du 16/05/2025

Durée 2h. Une feuille recto-verso de notes est autorisée.

Notations (optimisation).

Soit $n, m \in \mathbb{N}^*$. On considère les fonctions suivantes

$$F:x\in\mathbb{R}^n\mapsto\frac{1}{2}\left\|Ax-b\right\|_2^2+\left|\alpha\right|\|x\|_1\qquad\text{ et }\qquad f:(x,t)\in\mathbb{R}^n\times\mathbb{R}\mapsto\frac{1}{2}\left\|Ax-b\right\|_2^2+\left|\alpha t\right|$$

où $A \in \mathcal{M}_{m,n}(\mathbb{R}), b \in \mathbb{R}^m$ et $\alpha > 0$. On pose $M = \frac{1}{2\alpha} \|b\|_2^2 + 1 > 0$.

On s'intéresse dans la première partie aux deux problèmes d'optimisation suivants

$$\inf_{x \in \mathbb{R}^n} F(x),$$

et

$$\inf_{(x,t)\in C} f(x,t).$$

οù

$$C = \{(x, t) \in \mathbb{R}^n \times \mathbb{R} / \|x\|_1 \leqslant t \text{ et } t \leqslant M\}.$$

Dans la seconde partie, on s'intéressera uniquement au problème

$$\inf_{(x,t)\in C^+} f(x,t).$$

οù

$$C^{+} = \{(x,t) \in \mathbb{R}^{n} \times \mathbb{R} / x \succeq 0_{\mathbb{R}^{n}}, \|x\|_{1} \leqslant t \text{ et } t \leqslant M\},$$

Notations (algèbre linéaire).

- On notera (e_1, e_2, \ldots, e_n) la base canonique de \mathbb{R}^n , $\langle \cdot, \cdot \rangle$ le produit scalaire canonique sur \mathbb{R}^n et $1_{\mathbb{R}^n} = (1, 1, \ldots, 1) \in \mathbb{R}^n$.
- Pour alléger les notations, on notera $V = \mathbb{R}^n \times \mathbb{R}$, qui est donc un \mathbb{R} -espace vectoriel de dimension n+1.
- La base canonique de V est donc $((e_1,0),(e_2,0),\ldots,(e_n,0),(0_{\mathbb{R}^n},1))$. Notez que $(e_i,0)$ est bien un élément de $\mathbb{R}^n \times \mathbb{R} = V$, puisque $e_i \in \mathbb{R}^n$ et $0 \in \mathbb{R}$.
- On notera $\langle \cdot, \cdot \rangle_V$ le produit scalaire canonique sur V défini par

$$\forall (x,t) \in V, \forall (x',t') \in V, \quad \langle (x,t), (x',t') \rangle_V = \langle x, x' \rangle + tt'.$$

On peut munir V de la norme 1: pour tout $(x,t) \in V$, $\|(x,t)\|_1 = \|x\|_1 + |t|$, ou encore de la norme 2: pour tout $(x,t) \in V$, $\|(x,t)\|_2 = \sqrt{\|x\|_2^2 + t^2}$. Ainsi V est un \mathbb{R} -espace vectoriel normé de dimension finie et la suite $((x_n,t_n))_{n\in\mathbb{N}}$ d'élements de V converge vers $(x,t) \in V$ si et seulement si $x_n \underset{n\to +\infty}{\longrightarrow} x$ et $t_n \underset{n\to +\infty}{\longrightarrow} t$.

La seconde partie peut être traitée de manière indépendante de la première en admettant au besoin les résultats nécessaires.

Partie I: Questions préliminaires (19.5pt)

- 1. Montrer que le problème (\mathcal{P}_F) est bien posé.
- 2. Montrer que la fonction F est convexe sur \mathbb{R}^n . Est-elle en général strictement convexe sur \mathbb{R}^n ? Indication : on pourra fournir un exemple.
- 3. a) Justifier brièvement que f est C^2 sur V.
 - b) Soient $(x,t) \in V$ et $(h,s) \in V$. Déterminer l'expression de la différentielle de f en (x,t) dans la direction (h,s) i.e. df(x,t)(h,s).
 - c) En déduire que $\nabla f(x,t) = (A^T(Ax b), \alpha)$.
 - d) Soit $(h', s') \in V$. Déterminer $d^2 f(x, t) ((h, s), (h', s'))$. En déduire que f est convexe sur V. Puis que f n'est pas strictement convexe sur V.
- 4. Montrer que f admet un minimum global sur C.
- 5. L'objet de cette question est de montrer que les problèmes (\mathcal{P}_F) et (\mathcal{P}_f) sont équivalents dans le sens où leurs ensembles de solutions sont en bijection et que les infima sont égaux.
 - a) Montrer que si $(x,t) \in C$ est un minimum global de f sur C, alors $t = ||x||_1$.
 - b) Soit $(x,t) \in V$. Montrer que si x est une solution de (\mathcal{P}_F) , alors $F(x) \leq \alpha M$. De même montrer que si (x,t) est une solution de (\mathcal{P}_f) , alors $f(x,t) \leq \alpha M$.
 - c) Soit $x \in \mathbb{R}^n$. Montrer que si x est une solution de (\mathcal{P}_F) , alors $(x, ||x||_1)$ est une solution de (\mathcal{P}_f) .
 - d) En déduire que $\inf_{x \in \mathbb{R}^n} F(x) = \inf_{(x,t) \in C} f(x,t)$.
 - e) Soit $(x,t) \in V$. Montrer que si (x,t) est une solution de (\mathcal{P}_f) , alors x est une solution de (\mathcal{P}_F) . Indication : on pourra raisonner par l'absurde.

Correction.

$$19.5 = 1 + 3.5 + (0.25 + 1.5 + 0.75 + 2.5) + 2.5 + (1 + 1.25 + 2.5 + 0.75 + 2.5)$$

- 1. La fonction F est continue sur \mathbb{R}^n et coercive puisque pour tout $x \in \mathbb{R}^n$, $F(x) \geqslant \alpha \|x\|_1 \xrightarrow{\|x\|_1} +\infty$. Donc le problème (\mathcal{P}_F) est bien posée (l'ensemble des contraintes étant \mathbb{R}^n qui est fermé et non vide) (1pt).
- 2. Posons $g: x \in \mathbb{R}^N \mapsto \frac{1}{2} \|Ax b\|_2^2$. Alors g est \mathcal{C}^2 sur \mathbb{R}^n (car polynomiale) et pour tout $x \in \mathbb{R}^n$, $\nabla g(x) = A^T(Ax b)$ puis $\nabla^2 g(x) = A^T A$ qui est une matrice symétrique positive. Ainsi g est convexe sur \mathbb{R}^n . Une norme est toujours convexe, donc $F = g + \alpha \|\cdot\|_1$ est convexe sur \mathbb{R}^n (2pt).

La fonction F n'est pas strictement convexe sur \mathbb{R}^n en général. Si la matrice A^TA est définie positive alors cela sera le cas, mais rien ne dit que cette propriété est ici satisfaite. Par exemple si n=1, A=0 alors $F: x \in \mathbb{R} \mapsto \frac{1}{2} ||b||_2^2 + \alpha |x|$ et comme la valeur absolue n'est pas strictement convexe sur \mathbb{R} , F n'est pas strictement convexe sur \mathbb{R} (1.5pt).

3. a) La fonction f est polynomiale en les coefficients de ses arguments, donc f est bien C^2 sur V (0.25pt). b) On a

$$f((x,t) + (h,s)) = \frac{1}{2} \|A(x+h) - b\|_{2}^{2} + \alpha(t+s) = f(x,t) + \langle Ah, Ax - b \rangle + \alpha s + \dot{A}hAh,$$

= $f(x,t) + \langle A^{T}(Ax - b), h \rangle + \alpha s + o_{h\to 0}(h).$

Ainsi par identification de la partie linéaire du développement de Taylor, on obtient $df(x,t)(h,s) = \langle A^T(Ax - b), h \rangle + \alpha s \, (1.5 \text{pt}).$

- c) En utilisant le produit scalaire canonique sur V, on peut réécrire : $df(x,t)(h,s) = \langle (A^T(Ax-b),\alpha), (h,s) \rangle_V$. Ainsi $\nabla f(x,t) = (A^T(Ax-b),\alpha) \in V$ (0.75pt).
- d) On a

$$df((x,t)+(h',s'))(h,s) = \langle A^T(A(x+h')-b), h \rangle + \alpha s = df(x,t)(h,s) + \langle A^TAh', h \rangle,$$

donc par identification on obtient $d^2f(x,t)((h,s)(h',s')) = \langle A^TAh', h \rangle$ (1pt).

On a donc pour tout $(x,t) \in V$, tout $(h,s) \in V$, $d^2f(x,t)((h,s),(h,s)) = ||Ah||_2^2 \ge 0$, donc f est convexe sur $V(0.75 \mathrm{pt})$.

Par contre $d^2 f(x,t)$ n'est pas définie positive puisque pour $s \neq 0$, $d^2 f(x,t)$ ((0,s),(0,s)) = 0. Ainsi f n'est pas strictement convexe sur V (0.75pt).

- 4. La fonction f est continue sur V donc sur C qui est non vide. Puis C est fermé par caractérisation séquentielle des fermés : soit $((x_n,t_n))_{n\in\mathbb{N}}$ une suite de C qui converge vers (x,t), alors pour tout $n\in\mathbb{N}$, $t_n\leqslant M$ donc $t\leqslant M$, puis $\|x_n\|_1\leqslant t_n$ donc $\|x\|_1\leqslant t$, d'où $(x,t)\in C$. Ensuite C est borné car pour $(x,t)\in C$, $\|(x,t)\|_1=\|x\|_1+|t|\leqslant 2|t|\leqslant 2M$. Donc C est un compact de V, d'où f admet un minimum global sur C (2.5pt).
- 5. a) Soit $(x,t) \in C$ un minimum global de f sur C. Si $||x||_1 < t$, alors $f(x,||x||_1) < f(x,t)$, mais comme $(x,||x||_1) \in C$, cela contredirait le fait que (x,t) est un minimum global de f sur C. Donc $||x||_1 \ge t$, i.e. $t = ||x||_1$ (1pt).
 - b) Supposons que x est un minimum global de F sur \mathbb{R}^n , on a $F(x) \leq F(0) = \frac{1}{2} ||b||_2^2 < \alpha M$ (0.5pt). Supposons maintenant que (x,t) est un minimum global de f sur C. Comme $(0_{\mathbb{R}^n}, M) \in C$, on a $f(x,t) \leq f(0,M) = \alpha M$ (0.75pt).
 - c) Soit x une solution de (\mathcal{P}_F) . Posons $t = ||x||_1$. Montrons tout d'abord que $(x, ||x||_1) = (x, t) \in C$. On a directement $||x||_1 \leq t$. Puis comme $F(x) \leq \alpha M$ (Question 5.b)) et $\alpha ||x||_1 \leq F(x)$, on a donc $t = ||x||_1 \leq M$. D'où $(x,t) \in C$.
 - Soit $(x', t') \in C$. Alors comme x est une solution de (\mathcal{P}_F) , on a $F(x) \leqslant F(x')$ donc $f(x, ||x||_1) \leqslant f(x', ||x'||_1)$ puisque $F(x) = f(x, ||x||_1)$ et $F(x') = f(x', ||x'||_1)$. Or $||x'||_1 \leqslant t'$, d'où $f(x', ||x'||_1) \leqslant f(x', t')$. Finalement $f(x, ||x||_1) \leqslant f(x', t')$ pour tout $(x', t') \in C$ et $(x, ||x||_1) \in C$, donc $(x, ||x||_1)$ est une solution de (\mathcal{P}_f) (2.5pt).
 - d) Soit x une solution de (\mathcal{P}_F) . Alors d'après la question précédente, $(x, ||x||_1)$ est une solution de C. Ainsi $\inf_{\mathbb{R}^n} F = F(x) = f(x, ||x||_1) = \inf_C f(0.75 \text{pt})$.
 - e) Soit $(x,t) \in C$ une solution de (\mathcal{P}_f) . Supposons par l'absurde que x n'est pas un minimum global de F sur C. Alors il existe $x' \in \mathbb{R}^n$ tel que F(x') < F(x). Or $F(x) = f(x, \|x\|_1)$ donc $F(x') < f(x, \|x\|_1)$. De plus grâce à la question 5.a), $t = \|x\|_1$ donc F(x') < f(x,t). Puis grâce à la question 5.b) $f(x,t) \leqslant \alpha M$, ainsi $F(x') < \alpha M$ et comme $F(x') \geqslant \alpha \|x'\|_1$, on déduit $\|x'\|_1 \leqslant M$. Par conséquent $(x', \|x'\|_1) \in C$. Enfin F(x') < f(x,t) se réécrit $f(x', \|x'\|_1) < f(x,t)$ car $F(x') = f(x', \|x'\|_1)$. On obtient donc une contradiction avec le fait que (x,t) est un minimum global de f sur C. D'où x est bien un minimum global de F (sur \mathbb{R}^n) (2.5pt).

Partie II : Étude du problème (\mathcal{P}_f^+) . (22.5pt)

- 6. Montrer que l'on a $C^+ = \{(x,t) \in V \mid \forall i \in \{1,\ldots,n+2\}, f_i(x,t) \leq 0\},$ où
 - pour tout $i \in \{1, \ldots, n\}, f_i : (x, t) \in V \mapsto \langle -(e_i, 0), (x, t) \rangle_V$
 - $-f_{n+1}: (x,t) \in V \mapsto \langle \sum_{i=1}^{n} (e_i,0) (0_{\mathbb{R}^n},1), (x,t) \rangle_V,$
 - $-f_{n+2}: (x,t) \in V \mapsto \langle (0_{\mathbb{R}^n}, 1), (x,t) \rangle_V M.$
- 7. Montrer que C^+ est convexe. En déduire que le problème (\mathcal{P}_f^+) est convexe.
- 8. On suppose dans cette question uniquement que n=1.
 - a) Représenter l'ensemble $C^+ \subset \mathbb{R}^2$. Puis représenter $T_{C^+}((0,0))$ et enfin $T_{C^+}((0,0))^*$. Il n'est pas demandé de justifications particulières.
 - b) En déduire que si (0,0) est solution de (\mathcal{P}_f^+) , alors $\frac{1}{\alpha}A^Tb \leq 1_{\mathbb{R}^n}$.
- 9. Justifier que f admet bien un minimum global sur C^+ .
- 10. a) Déterminer l'ensemble des points réguliers de C^+ . Indication : on pourra admettre que pour tout $(x,t) \in V$, toute sous famille à n+1 vecteurs de la famille $(\nabla f_1(x,t), \ldots, \nabla f_{n+2}(x,t))$ est libre.
 - b) Soit $(x,t) \in V$. Prouver que (x,t) est une solution de (\mathcal{P}_f^+) si et seulement si (x,t) satisfait les conditions KKT pour (\mathcal{P}_f^+) .
- 11. Soit $(x,t) \in V$. On suppose que (x,t) satisfait les conditions KKT pour (\mathcal{P}_f^+) .
 - a) Montrer qu'il existe $\lambda = (\lambda_1, \dots, \lambda_{n+2}) \in \mathbb{R}^{n+2}$ tel que
- (1) $(x,t) \in C^+, \quad \lambda \succeq 0_{\mathbb{R}^{n+2}}, \quad \forall i \in \{1,\dots,n+2\}, \ \lambda_i f_i(x,t) \geqslant 0,$
- (2) $A^{T}(Ax b) = \sum_{i=1}^{n} (\lambda_i \lambda_{n+1})e_i \quad \text{et} \quad \lambda_{n+1} \lambda_{n+2} = \alpha.$
 - b) Montrer que l'on a nécessairement $\lambda_{n+2} = 0$. Indication : on pourra raisonner par l'absurde.

12. Pour tout $x \in \mathbb{R}^n$, on pose

$$\eta(x) = \frac{1}{\alpha} \left(A^T (b - Ax) \right) \in \mathbb{R}^n.$$

On note également supp $(x) = \{i \in \{1, \dots, n\} \mid x_i \neq 0\}$ (appelé le support de x).

a) Soit $(x,t) \in C^+$. Montrer, d'après ce qui précède, que (x,t) est une solution de (\mathcal{P}_f^+) si et seulement si

(3)
$$t = ||x||_1, \quad \eta(x) \leq 1_{\mathbb{R}^n} \quad \text{et} \quad \text{supp}(x) \subset \{i \in \{1, \dots, n\} / \eta(x)_i = 1\}.$$

b) Applications. Retrouver le résultat de la question 8.b).

Correction.

$$22.5 = 1.5 + 1.75 + (2.25 + 1.5) + 1 + (2 + 1) + (1 + 2) + (7 + 1.5)$$

6. Soit $(x,t) \in C^+$. Alors $x \succeq 0_{\mathbb{R}^n}$ si et seulement si pour tout $i \in \{1,\ldots,n\}, x_i \geqslant 0$ i.e. $f_i(x,t) =$ $\langle -(e_i, 0), (x, t) \rangle_V = -x_i \leq 0 \, (0.5 \text{pt}).$

Puis comme pour tout $i, x_i \ge 0$, on a $||x||_1 = \sum_{i=1}^n x_i = \sum_{i=1}^n \langle (e_i, 0), x \rangle$ et $-t = \langle -(0_{\mathbb{R}^n}, 1), (x, t) \rangle_V$. D'où $||x||_1 - t \le 0$ se réécrit bien $f_{n+1}(x, t) \le 0$. Enfin $t \le M$, d'après ce qui précède se réécrit $f_{n+2}(x, t) \le 0$ (1pt).

7. D'après la précédente question, on a $C^+ = \bigcap_{i=1}^{n+2} \{f_i \leq 0\}$. Les fonctions f_1, \ldots, f_{n+1} sont linéaires donc convexes sur V, f_{n+2} est affine donc également convexe sur V. Ainsi les ensembles $\{f_i \leq 0\}$, pour tout i,

sont convexes et donc C^+ est convexe en tant intersection de convexes (1.5pt).

La fonction f est convexe sur V (démontré en première partie) et C^+ est convexe donc le problème (\mathcal{P}_f^+) est bien convexe (0.25pt).

8. a) Voir Figure 1. 0.75pt par dessin.

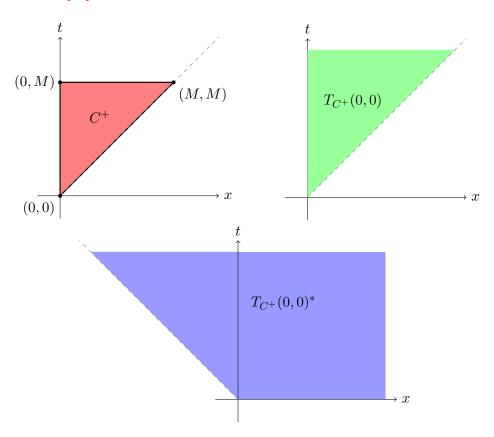


FIGURE 1. Représentations de C^+ , $T_{C^+}((0,0))$ et $T_{C^+}((0,0))^*$ lorsque n=1.

b) Si (0,0) est un minimum global de f sur C^+ , alors $\nabla f(0,0) \in T_{C^+}((0,0))^* = \{(x,t) \in \mathbb{R}^2 / t \ge 0, t \ge -x\}$. D'après la question 3.c), $\nabla f(0,0) = (-A^T b, \alpha) \in \mathbb{R} \times \mathbb{R}$. Comme $\alpha > 0$, $\nabla f(0,0) \in T_{C^+}((0,0))^*$ si et seulement si $\alpha \geqslant -(-A^Tb)$ i.e. $\frac{1}{\alpha}A^Tb \leqslant 1$ (1.5pt).

9. On a $C^+ = ((\mathbb{R}_+)^n \times \mathbb{R}) \cap C$, donc C^+ est de nouveau un ensemble fermé borné puisque C en est un. Donc C^+ est compact. La fonction f étant continue sur V, on déduit donc que f admet un minimum global sur C^{+} (1pt).

10. a) Soit $(x,t) \in C^+$. C'est un point régulier si $(\nabla f_i(x,t))_{i \in I(x,t)}$, où I(x,t) est l'ensemble des contraintes actives en (x,t), est une famille libre de V.

On admet que toute sous famille à n+1 éléments de la famille $(\nabla f_1(x,t),\ldots,\nabla f_{n+2}(x,t))$ est libre (il suffit d'écrire la définition et différencier trois cas en fonction de si on enlève un vecteur parmi les $\nabla f_i(x,t)$, ou $\nabla f_{n+1}(x,t)$, ou enfin $\nabla f_{n+2}(x,t)$). En particulier, on déduit que toute sous famille a *au plus* n+1 éléments est libre (en tant que sous famille d'une famille libre).

Supposons par l'absurde que $I(x,t) = \{1,\ldots,n+2\}$. Alors pour tout $i \in \{1,\ldots,n\}$, $f_i(x) = 0$, d'où x = 0. Mais comme $f_{n+1}(x,t) = 0$ et $f_{n+2}(x,t) = 0$, on obtient $||x||_1 = M$. C'est impossible car M > 0. Ainsi card(I(x,t)) < n+2, i.e. $(\nabla f_i(x,t))_{i \in I(x,t)}$ est une famille contenant au plus n+1 vecteurs, donc est libre. Par conséquent (x,t) est régulier (2pt).

b) Si (x,t) est un minimum global de f sur C^+ , alors comme tous les points de C^+ sont réguliers on a (x,t) régulier et donc (x,t) satisfait les conditions KKT (0.5pt).

Réciproquement, si (x, t) satisfait les conditions KKT, comme le problème (\mathcal{P}_f^+) est convexe, nécessairement (x, t) est un minimum global de f sur C^+ (0.5pt).

11. a) Comme (x,t) satisfait les conditions KKT, il existe $\lambda \in \mathbb{R}^{n+2}$ tel que

$$(x,t) \in C^+,$$

$$\lambda \succeq 0_{\mathbb{R}^{n+2}},$$

$$\forall i \in \{1,\dots,n+2\}, \ \lambda_i f_i(x,t) \geqslant 0,$$

$$\nabla f(x,t) + \sum_{i=1}^{n+2} \nabla f_i(x,t) = (0_{\mathbb{R}^n},0). (1pt)$$

La seule condition a réellement simplifier est la condition de stationnarité. On a déjà vu que $\nabla f(x,t) = (A^T(Ax - b), \alpha)$. De grâce aux expressions des f_i sous forme de produits scalaires, on obtient pour $i \in \{1, \ldots, n\}$, $\nabla f_i(x,t) = -(e_i, 0)$, puis $\nabla f_{n+1}(x,t) = (\sum_{i=1}^n e_i, -1)$ et enfin $\nabla f_{n+2}(x,t) = (0_{\mathbb{R}^n}, 1)$. La dernière condition se réécrit donc

$$\left(A^{T}(Ax - b) + \sum_{i=1}^{n} (\lambda_{n+1} - \lambda_{i})e_{i}, \alpha - \lambda_{n+1} + \lambda_{n+2}\right) = (0_{\mathbb{R}^{n}}, 0),$$

soit

$$A^{T}(Ax - b) = \sum_{i=1}^{n} (\lambda_i - \lambda_{n+1})e_i \quad \text{et} \quad \lambda_{n+1} - \lambda_{n+2} = \alpha \left(\frac{1pt}{n}\right).$$

b) Supposons par l'absurde que $\lambda_{n+2} > 0$. Alors par condition de complémentarité, $f_{n+2}(x,t) = 0$ i.e. t = M (0.5pt). On a donc $f(x,t) \ge \alpha t = \alpha M > \frac{1}{2} \|b\|_2^2 = f(0,0)$.

Or comme (x,t) satisfait les conditions KKT, d'après la question 10.b), (x,t) est un minimum global de (\mathcal{P}_f^+) . On a donc $f(x,t) \leq f(0,0)$ car $(0,0) \in C^+$. Contradiction! D'où $\lambda_{n+2} = 0$ (1.5pt).

- 12. a) On sait d'après la question 10.b) que (x,t) est solution de (\mathcal{P}_f^+) si et seulement si (x,t) satisfait les conditions KKT données en question 11.a). Il s'agit donc de montrer qu'elles sont équivalentes aux conditions attendues dans cette question.
 - (\Rightarrow) Supposons que les conditions de la question 11.a) sont satisfaites. On a vu en Partie I que nécessairement $t = \|x\|_1$ (car (x,t) est solution de (\mathcal{P}_f^+) car satisfait les conditions KKT). On a montré à la question 11.b) que l'on a $\lambda_{n+2} = 0$, d'où $\lambda_{n+1} = \alpha$. Ainsi $A^T(Ax b) = \sum_{i=1}^n (\lambda_i \lambda_{n+1})e_i$ se réécrit $\eta(x) = \sum_{i=1}^n \left(1 \frac{\lambda_i}{\alpha}\right)e_i$. Or pour tout $i \in \{1, \dots, n\}, \ \lambda_i \geqslant 0$ donc $\eta(x)_i = \langle \eta(x), e_i \rangle = 1 \frac{\lambda_i}{\alpha} \leqslant 1$ i.e. $\eta(x) \preceq 1_{\mathbb{R}^n}$. Enfin, soit $i \in \text{supp}(x)$, alors $f_i(x) < 0$ et donc comme $\lambda_i f_i(x) \geqslant 0$, on a nécessairement $\lambda_i = 0$, d'où $\eta(x)_i = 1$. On a bien montré $i \in \text{supp}(x) \subset \{i \in \{1, \dots, n\} / \eta(x)_i = 1\}$ (3.5pt).
- (\Leftarrow) Supposons que les conditions de (3) sont satisfaites. On sait par hypothèse de la question que $(x,t) \in C^+$. Il reste donc à montrer qu'il existe $\lambda \in \mathbb{R}^{n+2}$ tel que

$$\lambda \succeq 0_{\mathbb{R}^{n+2}},$$

$$\forall i \in \{1, \dots, n+2\}, \ \lambda_i f_i(x,t) \geqslant 0,$$

$$A^T (Ax - b) = \sum_{i=1}^n (\lambda_i - \lambda_{n+1}) e_i \quad \text{et} \quad \lambda_{n+1} - \lambda_{n+2} = \alpha.$$

Posons $\lambda_{n+1} = \alpha > 0$ et $\lambda_{n+2} = 0$. Puis pour tout $i \in \{1, \dots, n\}$, $\lambda_i = \alpha(1 - \eta(x)_i) \geqslant 0$ car $\eta(x)_i \leqslant 1$. Alors on a bien $A^T(Ax - b) = \sum_{i=1}^n (\lambda_i - \lambda_{n+1}) e_i$ et $\lambda_{n+1} - \lambda_{n+2} = \alpha$.

Il nous reste à démontrer que les conditions de complémentarité sont satisfaites. Celle pour i=n+2 est directe. Comme $t=\|x\|_1$, on a $f_{n+1}(x,t)=0$, donc $\lambda_{n+1}f_{n+1}(x,t)=0$. Enfin soit $i\in\{1,\ldots,n\}$. Si $x_i=0$ alors $\lambda_i f_i(x)=0\geqslant 0$. Sinon $i\in \operatorname{supp}(x)$ et donc $\eta(x)_i=1$. Comme $\lambda_i=\alpha(1-\eta(x)_i)$, on a $\lambda_i=0$ et donc de nouveau $\lambda_i f_i(x)=0\geqslant 0$ (3.5pt).

b) D'après la précédente question, $(0_{\mathbb{R}^n}, 0)$ est sol de (\mathcal{P}_f^+) si et seulement si

$$\eta(0_{\mathbb{R}^n}) \leqslant 1_{\mathbb{R}^n}$$
 et $\operatorname{supp}(0_{\mathbb{R}^n}) \subset \{i \in \{1, \dots, n\} / \eta(0_{\mathbb{R}^n})_i = 1\}.$

Or $\eta(0_{\mathbb{R}^n}) = \frac{1}{\alpha}A^Tb$ et $\operatorname{supp}(0_{\mathbb{R}^n}) = \emptyset$ donc l'inclusion est toujours vraie. On a ainsi montré que $(0_{\mathbb{R}^n}, 0)$ si et seulement si $\frac{1}{\alpha}A^Tb \leq 1_{\mathbb{R}^n}$ (1.5pt).