Optimisation - TD

- 1 Rappels de calcul différentiel
- 2 Problèmes d'optimisation : existence, unicité et caractérisation de solutions 3

1

1 Rappels de calcul différentiel

Exercice 1 (Échauffement)

- 1. Discuter de l'assertion suivante : $f: \mathbb{R}^n \to \mathbb{R}^m$ est différentiable sur \mathbb{R}^n si et seulement si il existe $\varphi: \mathbb{R}^n \to \mathbb{R}$ tel que pour tous $x \in \mathbb{R}^n$, $h \in \mathbb{R}^n$, $f(x+h) = f(x) + \varphi(h) + o(h)$.
- 2. Exprimer le gradient de l'application log en un point x > 0.
- 3. On se donne $\varphi : \mathbb{R}^n \to \mathbb{R}$ et $u : \mathbb{R} \to \mathbb{R}^n$ deux applications différentiables (sur \mathbb{R}^n et \mathbb{R} , respectivement). Justifier que $t \mapsto \varphi(u(t))$ est dérivable sur \mathbb{R} et donner une formule pour sa dérivée à partir de $\nabla \varphi$ et u'.
- 4. Montrer que l'application $x \in \mathbb{R}^n \mapsto ||x||$ est différentiable sur $\mathbb{R}^n \setminus \{0\}$, et donner sa différentiable. Est-elle différentiable en 0?

 On pourra écrire $||\cdot||$ comme la composition de deux applications plus agréables à manipuler.
- 5. Déterminer la différentielle de l'application $(A, B) \in (\mathcal{M}_n(\mathbb{R}))^2 \mapsto AB \in \mathcal{M}_n(\mathbb{R})$. On pourra munir $\mathcal{M}_n(\mathbb{R})$ d'une norme matricielle pour se simplifier la vie, et $(\mathcal{M}_n(\mathbb{R}))^2$ de la norme produit usuelle associée.

Exercice 2 (Vers une interprétation géométrique du gradient)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ la fonction définie pour tout $x \in \mathbb{R}^2$, par $f(x) = ||Ax||_2^2$, où

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}.$$

- 1. Quelle est la régularité de la fonction f?
- 2. Pour tous $x \in \mathbb{R}^2$, $h \in \mathbb{R}^2$, déterminer $\mathrm{d}f(x)(h)$, puis $\nabla f(x)$.
- 3. Pour tous $x \in \mathbb{R}^2$, $h, k \in \mathbb{R}^2$, déterminer $d^2 f(x)(h, k)$, puis $\nabla^2 f(x)$.
- 4. (a) Représenter graphiquement l'ensemble $L_1 = \{x \in \mathbb{R}^2 : f(x) = 1\}$, appelé ensemble de niveau 1 de f.
 - (b) Choisissez $x \in L_1$ et représenter le vecteur $\nabla f(x)$ en ce point. Que remarquez-vous?

Exercice 3

On fixe $\delta > 0$ et $n \in \mathbb{N}$ avec $n \geq 3$. On définit

$$\forall x \in \mathbb{R}^n$$
, $J_{\delta}(x) = \sum_{i=2}^{n-1} N_{\delta}(x_{i+1} + x_{i-1} - 2x_i)$, où $N_{\delta}(t) = \sqrt{\delta + t^2}$.

On pourra dans tout l'exo utiliser les fonctions dérivées N'_{δ} dans N''_{δ} sans nécessairement en faire le calcul explicite.

- 1. Justifier que J_{δ} est de classe C^{∞} sur \mathbb{R}^n , puis donner une expression de $\mathrm{d}J_{\delta}(x)(h)$ pour tous $x,h\in\mathbb{R}^n$.
- 2. Montrer que J_{δ} peut s'écrire sous la forme

$$\forall x \in \mathbb{R}^n, \quad J_{\delta}(x) = \sum_{i=2}^{n-1} N_{\delta}(A_i x),$$

avec des matrices A_i , $i \in \{2, ..., n-1\}$, que l'on explicitera. Réécrire la différentielle grâce aux A_i , et en déduire le gradient et la hessienne de J_{δ} en tout point $x \in \mathbb{R}^n$.

3. Donner une expression de $d^2J_{\delta}(x)(h,k)$ pour tous $x \in \mathbb{R}^n$ et $(h,k) \in \mathbb{R}^n \times \mathbb{R}^n$, à l'aide des A_i .

Exercice 4

Soient $N, M \in \mathbb{N}^*$. On considère la fonction

$$J_{\lambda}: \alpha \in \mathbb{R}^N \mapsto \frac{1}{n} \sum_{i=1}^n \log(1 + e^{-y_i \langle \alpha, x_i \rangle}) + \lambda ||L\alpha||^2,$$

où $\lambda > 0$, $L \in \mathcal{M}_{M,N}(\mathbb{R})$ et les x_i, y_i , pour tout $i \in \{1, \ldots, n\}$, sont des éléments fixés.

- 1. Donner la nature des éléments $x_i, y_i, i \in \{1, ..., n\}$. Sur quel espace est définie la norme euclidienne utilisée dans l'expression de J_{λ} ?
- 2. Donner une expression du gradient et de la hessienne de J_{λ} après avoir préalablement justifié qu'elle est deux fois continûment différentiable.

On pourra introduire des notations adéquates comme dans l'Exercice 3 pour se faciliter la tâche.

Exercice 5 (Formalisation de l'interprétation géométrique du gradient)

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction de classe C^1 . Pour $\lambda \in \mathbb{R}$, on note $L_{\lambda} = \{x \in \mathbb{R}^2, f(x) = \lambda\}$ la ligne de niveau λ de f.

Soit $x_0 \in \mathbb{R}^2$ tel que $\nabla f(x_0) \neq 0$ et notons $\lambda_0 = f(x_0)$. On se donne $\gamma :]-\varepsilon, \varepsilon[\to \mathbb{R}^2,$ pour un certain $\varepsilon > 0$, une fonction de classe C^1 telle que $\gamma(0) = x_0$.

- 1. Quelle condition doit satisfaire $\gamma'(0)$ pour que $f \circ \gamma$ décroisse le plus vite au voisinage de 0?
- 2. On suppose maintenant que $f \circ \gamma$ est constante (à λ_0 , donc). Démontrer que $\nabla f(x_0)$ est orthogonale au vecteur $\gamma'(0)$, i.e. à la tangente à la ligne de niveau L_{λ_0} en x_0 .
- 3. On suppose que $\gamma'(0) = \nabla f(x_0)$. Montrer alors qu'il existe une fonction $\xi : \lambda \mapsto \xi(\lambda) \in \mathbb{R}^2$ définie sur un voisinage de λ_0 , de classe C^1 et telle que $\xi(\lambda) \in L_\lambda$. En déduire un équivalent de $\|\xi(\lambda) x_0\|$ lorsque $\lambda \to \lambda_0$. Interpréter.

2 Problèmes d'optimisation : existence, unicité et caractérisation de solutions

Exercice 1

Discuter du caractère bien posé du problème de minimisation associé à l'application $f:D\to\mathbb{R}$ considérée.

- 1. $f:(x_1,x_2)\mapsto e^{-\|(x_1,x_2)\|}$ avec $D=\mathbb{R}^2$, puis $D=\overline{B}(0,1)$, puis D=B(0,1).
- 2. $f:(x_1, x_2) \mapsto x_1^3 + x_2^2 2x_2$ avec $D = \mathbb{R}^2$, puis $D = \mathbb{R}_+ \times \mathbb{R}$.
- 3. $f: x \mapsto \cos(\|x\|^2)$ avec $D = \mathbb{R}^d$.

Exercice 2

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (x_1, x_2) \in \mathbb{R}^2, \quad f(x_1, x_2) = x_1^3 + x_2^3 - 6(x_1^2 - x_2^2).$$

- 1. Le problème min. f (sans contraintes, donc) est-il bien posé? Donner sans preuve un ensemble D non borné sur lequel le problème de minimisation de f est bien posé.
- 2. Montrer que f admet quatre points critiques.
- 3. Représenter sur ordinateur f au voisinage de ses points critiques. Préciser la nature des points critiques (maximum local, minimum local, point col) d'après les observations.
- 4. Pour $t \in \mathbb{R}$, calculer f(0,t) et f(t,0) et dire si f admet un extremum local en (0,0).
- 5. Pour les trois autres points critiques, calculer la hessienne de f en ces points et conclure quant à leur nature.

Exercice 3

Soient p_1, \ldots, p_k , k points distincts dans \mathbb{R}^n . Le but de cet exercice est de trouver le point qui minimise la somme des distances au carré à tous les points p_i . Pour $x \in \mathbb{R}^n$, on définit alors

$$J(x) = \frac{1}{2} \sum_{i=1}^{k} ||x - p_i||^2.$$

- 1. Montrer que J admet un unique point critique x^* sur \mathbb{R}^n . En donner une formule explicite ainsi qu'une interprétation géométrique.
- 2. Montrer que x^* est l'unique minimum global de J.

On se donne $1 et on s'intéresse désormais au cas plus général consistant à minimiser sur <math>\mathbb{R}^n$ la fonction J_p définie

$$\forall x \in \mathbb{R}^n, \quad J_p(x) = \frac{1}{p} \sum_{i=1}^k ||x - p_i||_p^p.$$

- 3. Montrer que la fonction $x \mapsto \frac{1}{p} ||x||_p^p$ est de classe C^1 et strictement convexe sur \mathbb{R}^n . On pourra étudier la fonction $z \mapsto \frac{1}{p} |z|^p$ sur \mathbb{R} .
- 4. Montrer que J_p admet un unique minimiseur global x^* , et donner l'équation qu'il doit satisfaire.

Exercice 4

Soit D la droite de \mathbb{R}^2 d'équation $x_2=0$. On considère le problème d'optimisation

où pour tout $(x_1, x_2) \in \mathbb{R}^2$, $f(x_1, x_2) = x_1^2 + x_2^2 - 4x_1 - 2x_2 + 5$.

- 1. Justifier que f admet un unique minimiseur global sur \mathbb{R}^2 .
- 2. (a) Décrire les lignes de niveau de f.
 - (b) Conjecturer, à partir d'observations géométriques, l'ensemble des solutions du problème d'optimisation.
- 3. (a) Montrer que (P) est bien posé.
 - (b) Montrer que $x^* = (x_1^*, x_2^*) \in D$ est solution de (P) si et seulement si $\nabla f(x^*) \in D^{\perp}$. Identifier alors l'ensemble des solutions de (P).