

Licence 3ème année, 2021-2022, Transformée de Fourier et Applications

Examen du 05/05/2022

Durée 1h30. Aucun document n'est autorisé. Les exercices sont indépendants. On prendra soin de bien justifier les réponses.

Exercice 1. (Cours)

- 1. a) Rappeler la définition du produit scalaire sur l'espace $L_p^2(0, 2\pi)$ et de la norme quadratique (ou norme 2).
 - b) Rappeler la définition des coefficients de Fourier complexes et réels de $f \in L_p^2(0,2\pi)$.
 - c) Rappeler la définition de la somme partielle symétrique d'ordre $N \in \mathbb{N}$ de la série de Fourier de $f \in L^2_v(0, 2\pi)$. Sur quel sous-espace vectoriel est-ce la projection orthogonale de f?
 - d) Énoncer et démontrer l'inégalité de Bessel.
- 2. Soit $f: \mathbb{R} \to \mathbb{C}$ et $g: \mathbb{R} \to \mathbb{C}$ deux fonctions continues sur \mathbb{R} et 2π -périodiques.
 - a) Les fonctions f et g sont-elles dans $L_p^2(0,2\pi)$? Indication : justification courte attendue.
 - b) On suppose que pour tout $n \in \mathbb{Z}$, $c_n(f) = c_n(g)$. Justifier que pour tout $t \in \mathbb{R}$, f(t) = g(t).
 - c) On suppose que $\sum_{n\in\mathbb{Z}} c_n(f)$ converge absolument. Que dire de la série de Fourier de f?

Exercice 2. (Signaux et systèmes)

- 1. Soit $N \in \mathbb{N}^*$.
 - a) Rappeler la définition de la base canonique $\mathcal{B} = (e_0, e_1, \dots, e_{N-1})$ de ℓ_N .
 - b) Donner la définition d'un opérateur $T:\ell_N\to\ell_N$ stationnaire.
- 2. On suppose à partir de maintenant N=4 et on définit $T:\ell_4\to\ell_4$ pour tout $z\in\ell_4$ et tout $n\in\{0,1,2,3\}$ par

$$T(z)(n) = \frac{3}{2}z(n) + \left(-1 + \frac{i}{2}\right)z(n-1) + \frac{1}{2}z(n-2) + \left(-1 - \frac{i}{2}\right)z(n+1).$$

- a) Justifier que T est bien un opérateur stationnaire.
- b) Donner la réponse impulsionnelle h de T. Calculer sa DFT \hat{h} .
- c) On note A la matrice de T dans la base canonique de ℓ_4 . En justifiant brièvement, de quel type de matrice s'agit-il ? Donner l'expression de A.
- d) Rappeler la définition générale d'un opérateur multiplicateur de Fourier. Écrire T comme un opérateur multiplicateur de Fourier.

- e) En justifiant brièvement, à quel type de filtre peut-on assimiler T?
- f) Question bonus : rappeler la propriété satisfaite par la DFT vis à vis de la conjugaison. Pourquoi pouvait-on alors s'attendre, sans calcul explicite, à ce que \hat{h} soit un signal réel ?

Exercice 3. (Séries de Fourier)

On considère la fonction $f: \mathbb{R} \to \mathbb{R}$, 2π -périodique et définie par

$$\forall t \in]-\pi,\pi], \quad f(t) = \begin{cases} t+\pi, & \text{si } t \in]-\pi,0], \\ \pi, & \text{si } t \in]0,\pi]. \end{cases}$$

- 1. Représenter graphiquement la fonction f sur $[-3\pi, 3\pi]$. Indication : on prendra bien soin de faire apparaître clairement sur le graphe les valeurs en $k\pi$ pour $k \in \{-3, ..., 3\}$.
- 2. La fonction f est-elle continue?
- 3. Quelle est la régularité de f ? Justifier brièvement.
- 4. a) Calculer $c_0(f)$.
 - b) Calculer pour tout $n \in \mathbb{Z}^*$, $c_n(f)$.
 - c) En utilisant l'égalité de Parceval, déduire que

$$\frac{1}{2} \sum_{n=1}^{+\infty} \frac{1}{n^2} + \frac{2}{\pi^2} \sum_{n=0}^{+\infty} \frac{1}{(2n+1)^4} = \frac{5\pi^2}{48}.$$

5. a) Montrer que la somme partielle symétrique d'ordre $N \in \mathbb{N}^*$ de f, i.e. $S_N(f)$, se réécrit comme

$$\forall t \in \mathbb{R}, \quad S_N(f)(t) = \frac{3\pi}{4} + \sum_{n=1}^N \left(\frac{1 - (-1)^n}{\pi n^2} \cos(nt) - \frac{(-1)^n}{n} \sin(nt) \right).$$

- b) Vers quoi la série de Fourier de f converge-t-elle ponctuellement? Justifier.
- c) A-t-on pour tout $t \in \mathbb{R}$, $f(t) = \lim_{N \to +\infty} S_N(f)(t)$?
- d) Montrer que

$$\sum_{n=0}^{+\infty} \frac{1}{(2n+1)^2} = \frac{\pi^2}{8}.$$

Indication: on pourra choisir une valeur de t qui annule les termes $\sin(nt)$.

e) En utilisant un résultat de convergence ponctuelle en $t=\frac{\pi}{2},$ montrer que

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}.$$

6. Question bonus : en déduire la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^2}$, puis enfin de $\sum_{n=1}^{+\infty} \frac{1}{n^4}$. Indication : on pourra séparer, dans les sommes, les entiers naturels pairs et impairs.

Exercice 4. (Transformée de Fourier)

On rappelle que la transformée de Fourier d'une fonction $f: \mathbb{R} \to \mathbb{C}$ est définie (quand cela a un sens) par la formule

$$\forall \omega \in \mathbb{R}, \quad \mathcal{F}(f)(\omega) = \hat{f}(\omega) = \int_{-\infty}^{+\infty} f(t)e^{-i\omega t}dt.$$

- 1. Rappeler sur quel espace on définit la transformée de Fourier.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction intégrable, C^2 et dont les dérivées première et seconde sont également intégrable. Exprimer en fonction de \hat{f} la quantité $\mathcal{F}(f''-f)$.
- 3. Soit $\beta_0 : \mathbb{R} \to \mathbb{R}$ la fonction définie par $\beta_0 = \mathbb{1}_{\left[-\frac{1}{2}, \frac{1}{2}\right]}$. Justifier rapidement que β_0 est intégrable puis calculer $\hat{\beta}_0$.
- 4. On suppose que f vérifie

$$\forall t \in \mathbb{R}, \quad f''(t) - f(t) = -\beta_0 * \beta_0(t).$$

En déduire une expression de $\hat{f}(\omega)$ pour tout $\omega \in \mathbb{R}$.