

Licence 2^{ème} année, Mathématiques et Applications ANALYSE 3

Feuille de TD n°4

Suites réelles et complexes : suites extraites, suites de Cauchy. Rappels et compléments sur les séries.

Exercices complémentaires d'entraînement

1. Exercices corrigés : prise en main

Exercice 1

Soit $u \in \mathbb{R}^{\mathbb{N}^*}$ définie par $u_n = \left(-\frac{n+2}{n}\right)^n$ pour tout $n \in \mathbb{N}^*$. Donner deux valeurs d'adhérence de u.

Exercice 2

Soit $u \in \mathbb{C}^{\mathbb{N}}$ définie par $u_n = i \arctan^2(-\ln(n^5 + 7))$ pour tout $n \in \mathbb{N}$. Montrer que u possède au moins une valeur d'adhérence.

Exercice 3

Soit φ une extractrice. Montrer que pour tout $n \in \mathbb{N}$, $\varphi(n) \geqslant n$.

Exercice 4

- 1. Montrer que u la suite définie pour tout $n \in \mathbb{N}$, par $u_n = \sin\left(\frac{2n\pi}{3}\right)$, diverge.
- 2. Montrer que u la suite définie pour tout $n \in \mathbb{N}$, par $u_n = \frac{n\sin(3n+5)}{4n+1}$, admet une sous-suite convergente.

Exercice 5

On rappelle que la suite $(\cos(n))_{n\in\mathbb{N}}$ admet l'intervalle [-1,1] comme ensemble de valeurs d'adhérence. Soit u la suite définie par $u_n = |\cos(n)|$ pour tout $n \in \mathbb{N}$. Déterminer l'ensemble des valeurs d'adhérence de u.

Exercice 6

Soit $z = (z_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ une suite vérifiant pour tout $n \in \mathbb{N}$, $z_n^3 = 1$.

- 1. Montrer que z admet une valeur d'adhérence.
- 2. On note $V \subset \mathbb{C}$ l'ensemble des valeurs d'adhérence de z. Déterminer toutes les valeurs pouvant appartenir à V.
- 3. On suppose que pour tout $\ell \in V$, $\mathfrak{Im}(\ell) > 0$. Montrer que z converge.
 - 2. Exercices corrigés : révisions et approfondissement

Exercice 7

Soient $u, v \in \mathbb{K}^{\mathbb{N}}$ deux suites telles que v est une sous-suite de u. On suppose que v admet k valeurs d'adhérence avec $k \in \mathbb{N}$. Montrer que u admet au moins k valeurs d'adhérence.

Exercice 8

Soit u une suite réelle.

- 1. On suppose que $(u_{2n})_{n\in\mathbb{N}}$ converge vers ℓ et $(u_{2n+1})_{n\in\mathbb{N}}$ converge vers ℓ' . Montrer que ℓ et ℓ' sont les deux seules valeurs d'adhérence de u.
- 2. En déduire les valeurs d'adhérence de la suite u définie pour tout $n \in \mathbb{N}$ par $u_n = (-1)^n (1 + e^{-n})$.

Exercice 9

Soit $u \in \mathbb{R}^{\mathbb{N}}$ une suite réelle. Montrer qu'elle admet une sous-suite de termes soit tous positifs, soit tous négatifs.

Exercice 10

Soient $c \in \mathbb{R}^*$ et $u \in \mathbb{R}^{\mathbb{N}}$ une suite telle que $\lim_{n \to +\infty} u_{n+1} - u_n = c$.

- 1. Montrer à l'aide des résultats du cours que u n'est pas de Cauchy.
- 2. Montrer en revenant aux définitions que u n'est pas de Cauchy.

Exercice 11

Soit $u \in \mathbb{K}^{\mathbb{N}}$. On suppose que les sous-suites $(u_{2n})_{n \in \mathbb{N}}$, $(u_{2n+1})_{n \in \mathbb{N}}$ et $(u_{3n})_{n \in \mathbb{N}}$ convergent respectivement vers des scalaires a, b et c.

- 1. Montrer que a = b = c.
- 2. En déduire que u converge.