

# Licence 2<sup>ème</sup> année, Mathématiques et Applications, 2024-2025 ANALYSE 3

# Feuille de TD n°4

Suites réelles et complexes : suites extraites, suites de Cauchy. Rappels et compléments sur les séries.

## Exercice 1

Soit  $u \in \mathbb{R}^{\mathbb{N}}$ . Si u tend vers  $+\infty$ , resp.  $-\infty$ , alors toute suite extraite de u tend vers  $+\infty$ , resp.  $-\infty$ .

#### Exercice 2

Soient  $u, v \in \mathbb{K}^{\mathbb{N}}$  deux suites convergentes. On suppose que pour tout  $n \in \mathbb{N}$ ,  $u_{2n} = v_{2n+1}$ . Montrer que u et v tendent vers la même limite.

#### Exercice 3

Soit  $u \in \mathbb{K}^{\mathbb{N}}$  une suite qui converge vers  $\ell \in \mathbb{K}$ . Montrer qu'il existe  $\varphi$  une extractrice telle que pour tout  $n \in \mathbb{N}, |u_{\varphi(n)} - \ell| < 2^{-n}$ .

### Exercice 4

Soit u une suite réelle et  $\ell \in \mathbb{R}$ . Montrer qu'il y a équivalence entre :

- (1) u ne converge pas vers  $\ell$ ,
- (2) il existe  $\varepsilon_0 > 0$  et une extractrice  $\varphi$ , tels que pour tout  $n \in \mathbb{N}$ ,  $u_{\varphi(n)} \notin ]\ell \varepsilon_0, \ell + \varepsilon_0[$ .

#### Exercice 5

- 1. Donner deux valeurs d'adhérences de la suite u définie pour tout  $n \in \mathbb{N}$ , par  $u_n = \arctan((-1)^n n)$ .
- 2. Montrer que ce sont les seules.

# Exercice 6 (Cours)

Soit u une suite réelle, bornée et qui admet une unique valeur d'adhérence  $\ell \in \mathbb{R}$ . Montrer qu'elle converge vers  $\ell$ .

#### Exercice 7

Soit u une suite réelle.

- 1. Soit  $\ell \in \mathbb{R}$ . Montrer que les propositions suivantes sont équivalentes.
  - (a)  $\ell$  est une valeur d'adhérence de u.
  - (b) Pour tout  $\varepsilon > 0$ , l'ensemble  $\{n \in \mathbb{N} \mid |u_n \ell| < \varepsilon\}$  est infini.
  - (c) Pour tout  $\varepsilon > 0$ , pour tout  $N \in \mathbb{N}$ , il existe  $n \ge N$ ,  $|u_n \ell| < \varepsilon$ .
- 2. On suppose que  $u_{n+1}-u_n \underset{n\to +\infty}{\longrightarrow} 0$ . Montrer que l'ensemble des valeurs d'adhérence de u est un intervalle.

## Exercice 8

Soit  $u \in \mathbb{K}^{\mathbb{N}}$  telle que  $u(\mathbb{N})$  soit un ensemble fini.

- 1. Montrer que l'ensemble des valeurs d'adhérence de u est inclus dans  $u(\mathbb{N})$ .
- 2. a) Montrer que l'inclusion réciproque est fausse en général.
  - b) Proposer une condition additionnelle sur u pour que cette réciproque devienne vraie.
  - c) Application : soit u une suite N-périodique avec  $N \in \mathbb{N}^*$ . Déterminer l'ensemble des valeurs d'adhérence de u.

### Séries numériques.

### Exercice 9

On définit la suite  $u = (u_n)_{n \in \mathbb{N}^*}$  par  $u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k}$  pour tout  $n \in \mathbb{N}^*$ .

- 1. Montrer que les suites  $v=(u_{2n})_{n\in\mathbb{N}^*}$  et  $w=(u_{2n+1})_{n\in\mathbb{N}^*}$  convergent vers la même limite  $\ell\in\mathbb{R}$  et que pour tout  $n\in\mathbb{N}^*$ ,  $v_n\leqslant\ell\leqslant w_n$ .
- 2. Montrer alors que u converge vers  $\ell$ . Quel résultat sur les séries vient-on de redémontrer à travers l'étude ce cas particulier?
- 3. On considère la suite  $(R_n)_{n\in\mathbb{N}^*}$  définie pour tout  $n\in\mathbb{N}^*$  par  $R_n=\ell-u_n=\sum_{k=n+1}^{+\infty}\frac{(-1)^{k-1}}{k}$ . Montrer que pour tout  $n\in\mathbb{N}^*$ ,  $|R_n|\leqslant\frac{1}{n+1}$ . Indication : on pourra utiliser l'inégalité de la question 1., et faire un dessin en représentant les quantités  $u_{2n},u_{2n+1},\ell,R_{2n},u_{2n+1}-u_{2n}$ .

# Exercice 10 (Produit de Cauchy)

- 1. Soit u une suite réelle. Montrer que si la série  $\sum_{n\in\mathbb{N}} u_n$  est absolument convergente alors elle est convergente.
- 2. Soit  $\sum_{n\in\mathbb{N}}u_n$  et  $\sum_{n\in\mathbb{N}}v_n$  deux séries. On définit le produit de Cauchy 1 des deux séries précédentes comme la série

$$\sum_{n \in \mathbb{N}} w_n, \quad \text{où} \quad \forall n \in \mathbb{N}, \ w_n = \sum_{k=0}^n u_k v_{n-k} = \sum_{i+j=n} u_i v_j$$

Notons U, resp. V, resp. W, la suite des sommes partielles de la série  $\sum_{n\in\mathbb{N}} u_n$ , resp.  $\sum_{n\in\mathbb{N}} v_n$ , resp.  $\sum_{n\in\mathbb{N}} w_n$ .

a) Supposons que  $\sum_{n\in\mathbb{N}}u_n$  et  $\sum_{n\in\mathbb{N}}v_n$  sont à termes positifs et convergentes. Démontrer que pour tout  $n\in\mathbb{N},\,W_n\leqslant U_nV_n\leqslant W_{2n}$ . En déduire que  $\sum_{n\in\mathbb{N}}w_n$  converge et que

$$\sum_{n=0}^{+\infty} w_n = \left(\sum_{n=0}^{+\infty} u_n\right) \left(\sum_{n=0}^{+\infty} v_n\right).$$

- b) On suppose maintenant que  $\sum_{n\in\mathbb{N}}u_n$  et  $\sum_{n\in\mathbb{N}}v_n$  sont absolument convergentes. Montrer que  $\sum_{n\in\mathbb{N}}w_n$  converge. Que vaut la somme? *Indication : on pourra considérer la différence*  $|U_nV_n-W_n|$ .
- 3. a) Soit  $x \in \mathbb{R}$ . Démontrer que la série  $\sum_{n \in \mathbb{N}} \frac{x^k}{k!}$  est absolument convergente. On admet que la limite vaut
  - b) Soit  $x, y \in \mathbb{R}$ . Que vaut le produit de Cauchy de  $\sum_{n \in \mathbb{N}} \frac{x^k}{k!}$  et  $\sum_{n \in \mathbb{N}} \frac{y^k}{k!}$ ? En appliquant les résultats précédents, retrouver une propriété bien connue de l'exponentielle.

<sup>1.</sup> On remarquera que le produit de Cauchy généralise aux séries le produit classique entre deux sommes.